

NI 43-101 Technical Report Mineral Resource Estimate for Castle East, Robinson Zone, Ontario, Canada

Prepared for Canada Silver Cobalt Works. Frank Basa, Eng., CEO

By:

GoldMinds Geoservices Inc. Merouane Rachidi, P.Geo., Ph.D.,

> Effective date: 28 May, 2020 Issue date: 13 July, 2020

Certificate of Qualification (Merouane Rachidi)

Merouane Rachidi, P. Geo., Ph. D. - GoldMinds Geoservices Inc. 2999 Chemin Sainte-Foy, suite 200, Québec, Qc Canada G1X 1P7.

To accompany the Report entitled: "NI 43-101 Technical Report Mineral Resource Estimate for Castle East, Robinson Zone, Ontario, Canada" (the "Technical Report") with an effective date of May 28, 2020 and a signature date of July 13, 2020.

I, Merouane Rachidi P.Geo., Ph. D., do hereby certify that:

- a) I am a professional geoscientist, employed as Senior Geologist at GoldMinds Geoservices Inc. 2999 Chemin Sainte-Foy, suite 200, Québec, Qc, Canada G1X 1P7.
- b) This certificate applies to the report titled "NI 43-101 Technical Report Mineral Resource Estimate for Castle East, Robinson Zone, Ontario, Canada" (the "Technical Report"), dated July 13, 2020 with an effective date of May 28, 2020, prepared for Canada Silver Cobalt Works Inc.
- c) I graduated from Laval University in Quebec City (Ph.D. in Geology, 2012). I am a member of good standing of the l'Ordre des Géologues du Québec (Order of Geologists of Quebec license # 1792) a registered member of APGO registered #2998 and member of APEGNB license # L5769. My relevant experience includes over 7 years in exploration geology, drilling supervision, 3D orebody modelling, mining and mineral resource estimation (NI 43-101).
- d) I am a "Qualified Person" for purposes of National Instrument 43-101 (the "Instrument").
- e) I visited the property of Castle East Robinson zone the last time from May 25 to June 6, 2020.
- f) I have prepared and written the technical report. I am the author of the entire technical report.
- g) I am independent of Canada Silver Cobalt Works Inc. as defined by Section 1.5 of the Instrument.
- h) I have no prior involvement with the property that are the subject of the Technical Report.
- i) I have read NI 43-101, Form 43-101F1 and all the sections of the Technical Report. I certify that this technical Report has been prepared in compliance with that instrument and form.
- j) As of the effective date of the Technical Report, May 28, 2020, and to the best of my knowledge, information, and belief, the Technical Report, contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Signed this 13th day of July 2020, in Québec, Québec.

Effective date: May 28, 2020

(Original signed and sealed)

Merouane Rachidi. P.Geo., Ph.D., (APGO #2998) GoldMinds Geoservices Inc.

July 2020 II

TABLE OF CONTENTS

1	Sun	nmary	13
2	Inti	oduction	19
	2.1	Overview	19
	2.2	Report Responsibility and Qualified Persons	19
	2.3	Effective dates	19
	2.4	Sources of information	20
	2.5	Site visit	20
	2.6	Units and Currency	20
3	Rel	iance on other experts	21
4	Pro	perty description and location	22
	4.1	Location	22
	4.2	Property description	23
	4.3	Mineral rights and other permits	34
	4.4	Royalties	34
5	Acc	cessibility, climate, local resources, infrastructure and physiography (Item 5)	36
	5.1	Accessibility	36
	5.2	Climate	37
	5.3	Local resources	38
	5.4	Infrastructure	38
	5.5	Physiography	39
6	His	tory (Item 6)	39
	6.1	Previous mining and exploration work	39
	6.2	Historical resources	40
7	Geo	ological setting (Item 7)	44
	7.1	Regional geology	44

7.2	Property Geology	48
8 De	eposit Types (Item 8)	55
9 Ex	xploration (Item 9)	56
9.1	Historical exploration work	56
9.1	1.1 Surface drilling program	56
9.1	1.2 Geochemistry Mobile Metal Ions (MMI)	58
9.1	1.3 Surface sampling and trenches	62
9.2	Exploration by Canada Silver Cobalt Works	68
9.2	2.1 Geophysics	68
9.2	2.2 Surface mapping and trenches 2019	70
9.2	2.3 Borehole camera inspection	72
10	Drilling (Item 10)	80
10.1	Underground drilling	80
10	.1.1 Underground drilling program 2018	80
10	.1.2 Underground drilling program 2019	82
10.2	Surface diamond drilling	88
10	.2.1 Drilling program 2017	89
10	.2.2 Drilling program 2018/2019	91
10	2.3 Drilling program 2019/2020	94
11 5	Sample preparation, analysis and security (Item 11)	97
11.1	Sample preparation at the laboratory	101
11.2	Quality Assurance/Quality Control (QA/QC) program	101
11.3	Security	108
12	Data verification (item 12)	109
12.1	The database	109
12.2	Site visit	110

12.3	QA/QC program	111
13 M	lineral processing and metallurgical testing (Item 13)	113
14 M	lineral resource estimate (Item 14)	114
14.1	Resource database	114
14.2	Topography and bedrock-overburden surfaces	116
14.3	Resource estimation procedures (Methodology)	116
14.4	Geologic interpretation	117
14.5	Specific gravity	118
14.6	Compositing	118
14.6	5.1 Capping	119
14.6	5.2 Statistical analysis	119
14.7	Block model	120
14.7	7.1 Envelopes	120
14.7	7.2 Block model parameters	121
14.7	7.3 Search ellipse	122
14.7	7.4 Estimation parameters	123
14.8	Resource categories	124
14.9	Cut-off grade definition	125
14.9	2.1 Cut-off grade	125
14.9	0.2 Mining and OPEX	126
14.10	Resource statement	126
15 E	nvironmental studies, permitting, and social or community impact (Item 20)	128
16 A	djacent properties (Item 23)	128
17 O	ther relevant data and information (Item 24)	135
18 In	nterpretation and conclusions (Item 25)	136
19 R	ecommendations (Item 26)	138

List of Tables

Table 1: List of abbreviations	21
Table 2: Mining claims information, 100%owned by Canada Silver Cobalt Works Inc. as at May 2020	
Table 3: Mining Land Tenure information, 100%owned by Canada Silver Cobalt Works Inc	32
Table 4: Monthly temperature data at Timmins Victor Power Airport	37
Table 5: Monthly precipitation data at Timmins Victor Power Airport	37
Table 6: Historical geological and geophysical works (Mcllwaine, 1978)	40
Table 7: Production from Miller Lake Basin (Sergiades, 1968)	41
Table 8: Silver production Milner Township (McIlwaine 1978)	42
Table 9: Diamond drill holes data program 2011 data (UTM coordinates; NAD 83, zone 17)	57
Table 10: Highlights from the 2011 drilling program	58
Table 11: Example of sampling program log	59
Table 12: Highlights from the trench samples realised in 2014	62
Table 13: Grab sample's description	70
Table 14: Assay results of the grab samples	72
Table 15: Highlights of underground drilling program 2018	80
Table 16: Underground drill holes data, program 2019.	82
Table 17: Highlights assay results of the underground program 2019	86
Table 18: Diamond drill holes data program 2017 (UTM coordinates; NAD 83, zone 17)	89
Table 19: Highlights from the 2017 drilling program	91
Table 20: Diamond drill holes data program 2018/2019 (UTM coordinates; NAD 83, zone 17)	92
Table 21: Highlights from the 2018/2019 drilling program	92
Table 22: Diamond drill holes collars data (coordinates in UTM NAD83. Zone 17)	94
Table 23: Samples sent to the laboratory by hole number	94
Table 24: Highlights from the 2019/2020 drilling program	95

Table 25: The concentrations of the standard 1 (Oreas 76a)	105
Table 26: The concentrations of the standard 2 (Oreas 77a)	106
Table 27: The concentrations of the standard 3 (Oreas 604b)	106
Table 28: The concentrations of the standard 4 (Oreas 601b)	107
Table 29: The concentrations of the standard 5 (Oreas 600)	107
Table 30: Correlation between original assays and SGS re-assays control data for silver (Ag (g/t	()) 111
Table 31: Correlation between original assays and SGS re-assays control data for cobalt (in ppm	ı).111
Table 32: Search ellipsoid list for Castle East Robinson zone	122
Table 33: Two pass estimation composite parameters	123
Table 34: The price used for the calculation of AgEq in USD	125
Table 35: Mineral resource estimate at Castle East property using a cut-off grade of 258 AgEq §	g/t127
Table 36: Bonsalle Mine production	131
Table 37: Millerett Mine production	132
Table 38: Capitol Mine production	133
Table 39: Miller Lake O'Brien Mine production	134
Table 40: Estimation of the exploration program at CCW property	139

List of Figures

Figure 1: Project location map	23
Figure 2: Claim and lease location of the Canada SilverCobalt Works property (May, 2020)	24
Figure 3: The property access roads	36
Figure 4: Project access from the Ontario Highway 560 (Google Map, source)	37
Figure 5: Temperature and precipitation graph for 1981 to 2010, Timmins Victor Power Air station	-
Figure 6: Gowganda Area Showing Silver-Cobalt Calcite Vein Deposits (modified after Serg	
Figure 7: Partial underground plans of Miller Lake O'Brien, Castle N0.1 Shaft, and the Commines, in the Annual Report of Siscoe Mines Limited, 1967	-
Figure 8: Section W-E showing the underground works at Castle Mine	43
Figure 9: Stratigraphy for the Gowganda Lake and the Miller Lake Silver Area	45
Figure 10: Geology of the Property	46
Figure 11: Schematic geological cross section lookin SW (Modified from Robinson, 2015)	52
Figure 12: The location of the Capitol shaft and the Robinson zone	52
Figure 13: Underground drill core showing silver-cobalt-nickel mineralisation (white arrows)	53
Figure 14: Massive silver-cobalt mineralisation (white arrows) intersected by the drill holes (we program 2019/2020)	
Figure 15: Drill core with veins mostly filled by quartz cements within the Nipissing diabase	55
Figure 16: Location of 2011 drill hole collars	57
Figure 17: Massive silver mineralisation intersected at drill hole CA1108	58
Figure 18: MMI sampling pictures	59
Figure 19: Example of Line C487w – Graph of Copper	60
Figure 20: Compilation map MMI	61
Figure 21: 2014 winter trenching program	62
Figure 22: 2014 trench locations	63

Figure 23: Plan view of trench D3, with Au assay results	64
Figure 24: Plan view of trench D1, with Au assay results	65
Figure 25: Plan view of trench D2, with Au assay results	66
Figure 26: Plan view of trench C1, with Au assay results	67
Figure 27: Location of mining leases and drone's path (Zen Geomap inc., Report - Magnetometer survey)	
Figure 28: Field magnetics survey map	69
Figure 29: Map showing location of the grab samples	71
Figure 30: 600 m borehole inspection camera, Zhengzhou Defy Robot	73
Figure 31: Tent and equipment top above, activity under protection of adverse weather	75
Figure 32: Vein contact with weight at 2 O'clock and contact at 11 O'oclock	75
Figure 33: Silver Mineralization in the vein lateral camera view at 579.46m	76
Figure 34: Mineralization in the vein lateral camera view at 579.34m	76
Figure 35: Conceptual sketch of vein orientation ± 10 degrees	77
Figure 36: The camera down hole CS-20-22.	77
Figure 37: Vein contact at 414.659 m (measured by the depth sensor), orientation specified fishing sinker	
Figure 38: Vein in lateral view at 414.671 m (measured by the depth sensor)	78
Figure 39: Vein contact at 566.961 m (measured by the depth sensor)	79
Figure 40: Vein in lateral view at 567.022 m (measured by the depth sensor)	79
Figure 41: Underground drillhole locations on the property, 2018 drilling program	81
Figure 42: Location of the underground drill holes program 2019	82
Figure 43: Perspective view showing the orientation of the underground drill holes	84
Figure 44: Underground drilling with electrical drill (drill size AQ)	84
Figure 45: Photos of dry and wet core taken from hole C-U-19-01	85
Figure 46: A) Showing collars marked using a labelled wood piece; B) Drill hole following the vein; C) Core showing silver and cobalt-arsenides mineralisation	-

Figure 47: Drill holes distribution program 2019 with assays (color coded by Au g/t)	87
Figure 48: Drill holes distribution of 2019 program with assays (color coded by Ag g/t)	87
Figure 49: Drill holes distribution of 2019 program with assays (color coded by Co ppm)	88
Figure 50: Hole localisations drilled from the surface from 2017	88
Figure 51: Drill hole locations, 2017 drill program	90
Figure 52: Drill hole locations, 2018/2019 drill program	91
Figure 53: Drill hole localisations with highlights (Au g/t)	93
Figure 54: Massive silver mineralisation in hole CS-19-08 W01, -W02 and -W04 with vertice showing the thickness of the Nipissing dabase	
Figure 55: Drilling program 2019/2020, with drill core showing massive silver mineralisation	n97
Figure 56: Photos of drill core taken from hole CS-19-20 (wet and dry)	98
Figure 57: Electrical saw used for cutting the core samples	99
Figure 58: Sample placed in a plactic bag	99
Figure 59: Core samples in rice bags ready to ship to the laboratory	100
Figure 60: Silver (g/t) in blank samples	102
Figure 61: Cobalt (ppm) in blank samples	102
Figure 62: Nickel (ppm) in blank samples	102
Figure 63: The Ag, Co and Ni concentrations in standard 1	104
Figure 64: The Ag, Co and Ni concentrations in standard 2	104
Figure 65: The Ag, Co and Ni concentrations (ppm), standard 3	105
Figure 66: The Ag, Co and Ni concentrations (ppm), standard 4	106
Figure 67: The Ag, Co and Ni concentrations (ppm), standard 5	107
Figure 68: Drill hole location CA1108	109
Figure 69: Core shack at Castle silver mine property	110
Figure 70: Plan view showing the distribution of the database	114
Figure 71: Plan showing the drill holes used for this mineral resource estimate	115

Figure 72: Plan view showing the topographic surface and the database used for the resource estimate	
Figure 73: Inclined section showing the defined mineralised prisms defined on sections	117
Figure 74: Composite settings	119
Figure 75: Histogram showing all assays Ag g/t at Robinson zone	120
Figure 76: Histogram showing all assays Co g/t at Robinson zone	120
Figure 77: The mineralised envelopes at the Robinson zone	121
Figure 78: Block grid parameters	122
Figure 79: The ellipse orientation	123
Figure 80: Section view to the east of block models coded by Ag g/t	124
Figure 81: Map of adjacent properties	129
Figure 82: Location of the some old mines related to CCW property	130

1 Summary

Introduction

Castle Mine property is located in Haultain and Nicol Townships in the main historic Gowganda Silver Mining Camp. The property is 100% owned by Canada Silver Cobalt Works (CCW, the "Company" or the "issuer").

CCW is a junior exploration company listed on the Toronto Venture Exchange ("TSXV") under the symbol CCW. Its head office and exploration office are at the same address:

3028 Quadra Court Coquitlam, BC V3B 5X6

In March 2020, Mr. Frank Basa, CCW's CEO, retained GoldMinds Geoservices to prepare a technical report (the "Technical Report") in accordance with Canadian Securities Administrators' National Instrument 43-101 Respecting Standards of Disclosure for Mineral Projects ("NI 43-101") and Form 43 101F1. The aim of the Technical Report is to present the mineral resource estimate at the Robinson zone.

The effective date of the mineral resource estimate is May 28, 2020. The cut-off date for the database is 28th April 2020. The current mineral resource represents the first NI 43-101 mineral resources of the Robinson zone.

GoldMinds Geoservices is an independent exploration and mining consulting firm based in Québec City, Québec (Canada).

The present mineral resource estimate follows CIM Definition Standards on Mineral Resources and Mineral Reserves ("CIM Definition Standards") and CIM Estimation of Mineral Resources & Mineral Reserves Best Practice Guidelines ("CIM Best Practice Guidelines").

Property Description and Location

The property is located in the province of Ontario south of Timmins and Matachewan. The property is located within the administration boundaries of Haultain, Nicol, Chown, Morel and Shillington Townships in the Larder Lake Mining Division. The Haultain property is centered at 519420 mE and 5280414 mN within National Topographic System (NTS) map sheet 41P10. The locations in this report and appendices are referenced to NAD 83 UTM coordinates zone 17.

The property covers a total area of 7332.76 hectares and comprises one hundred and two (102) legacy claims in Shillington Township, eleven (11) legacy claims in Nicol Township, thirty-four (34) legacy claims in Morel Township, one hundred and eighty-two (182) legacy claims in Haultain Township and six (6) legacy claims in Nicol Township.

The property also comprises a total of 34 mining leases and two (2) License of Occupation (GG3879 and MLO657) in both Haultain and Nicol Townships. All these claims are 100%-owned by Canada Silver Cobalt Works Inc. (TSX-V: CCW). The Mining Leases and Licenses of Occupation cover a total area of 546.41 ha. Additional information regarding the status of the staked Legacy Claims are available in the table below, as viewed from MNDM public record of mining lands, the Mining Lands Administration System (MLAS) Web Site.

Royalties

Canada Silver Cobalt Works Inc has obligations pursuant to existing agreements currently in place; these being: (1) Gold Bullion (now Granada Gold Mine Inc.) will retain the right to earn a 1% NSR on all Canada Silver Cobalt Works' properties, which NSR will be distributed to shareholders of Granada Gold Mine in the form of dividends, payable in cash. (2) 2% of all direct costs incurred on exploration on the property is payable to the Matachewan First Nation; and (3) the property is subject to a sliding-scale royalty on silver production payable to a previous vendor, which will start from 3% when the price of silver is US\$15 or lower per troy ounce and up to 5% when the price of silver is greater than US\$30 per troy ounce and a 5% gross overriding royalty on the sale of products derived from the property with a minimum annual payment of \$15,000 in the form of royalties on all future production from the property.

Accessibility, Climate, Local Resources, Infrastructure and Physiography

The property is located within the administration boundaries of Haultain, Nicol, Chown, Morel and Shillington Townships in the Larder Lake Mining Division. It is located approximately 4 km northeast of the rural community of Gowganda and 36 km west of Elk Lake.

Access to the Castle Mine Site from Elk Lake is via Hwy 560 west for approximately 36km. Elk Lake is accessible from either New Liskeard to the east along Hwy 65W or from Kirkland Lake to the northeast via Hwy 66 west to Matachewan then Hwy 65 south to Elk Lake. The mine road turns off from Hwy 560 at a point described as UTM zone 17 T 519515E 5277459N.

The area experiences four main seasons: spring, summer, fall and winter. Spring conditions occur between the months of April and June and consist of warming temperatures that see freezing conditions at night and melting conditions in the daytime resulting in melt water run-off of the winter snowpack.

Geology Setting and Mineralization

Gowganda, along with South Lorrain (Mcllwaine 1970), is one of the more important satellite silver camps of the Timiskaming silver area. These camps arose owing to the more widespread prospecting for silver deposits following the rich discoveries in Cobalt in 1903.

The Gowganda area is near the northwestern edge of the Cobalt Embayment of the Superior Structural Province of the Canadian Shield. Several zones with Early Precambrian rocks are exposed and represent inliers in the Middle Precambrian cover with the exception of the metavolcanic

assemblage exposed inside the Miller Lake diabase basin. The Nipissing Diabase is of great importance as it is closely related to the silver deposits for which the area is well-known.

The area is underlain mainly by Middle Precambrian Huronian Supergroup sedimentary rocks which are relatively flat-lying, mildly metamorphosed, and intruded by several subcircular gabbroic intrusions of Nipissing Diabase. The metamorphism of the Huronian rocks was probably caused by the same tectonic events which deformed the Huronian rocks along the North Shore of Lake Huron (Card et al. 1970).

The deposit model and history of the Gowganda Camp, and the broader Northern Ontario Silver-Cobalt District which officially produced nearly half a billion ounces of silver last century, show that unusually rich, narrow-vein shoots (generally half an inch to six inches in true width and, in rare cases, up to approximately 12 inches in true width) can extend for tens or even hundreds of meters (pinching and swelling, moving in and out of very high-grade mineralization). These veins contain Ag-Co-Ni-As assemblage and may be surrounded by strongly mineralized wall rock and they're often within a network of closely spaced, parallel veins and veinlets in addition to silver-filled fractures. A native silver assemblage occurs in the wall rock as specks, and fracture fillings (commonly called leaf and plate silver).

The latest results of trenching, the 2018 drilling program and the 2019 underground drilling program highlighted gold mineralization at the western and the eastern zone. Drill holes CS-18-15, CS-18-16 and CS-18-16-W (wedge hole) east of the mine are a very important breakthrough and now have us seriously investigating an apparent gold system with associated sulphide and quartz veining with a major fault that maybe vein hosted gold system with favourable sulphides in association with a major fault. This discovery needs more exploration work for a good understanding of the deposit model.

Drilling, Sampling Method, Approach and Analysis

Two programs of underground drilling were done at Castle Mine (the first level). The first program started in June 2018 and the second program started in October 2019.

Numerous holes were drilled from the surface since 2017. A total of three drilling programs from the surface were realised on the CCW property totalling 9342.1 m (2017 program totalling 2405 m; 2018/2019 program totaling 3175.83 m and the last program 2019/2020 totaling 3761.27 m).

Data Verification

The results of the diamond drilling program were verified and validated by Merouane Rachidi, GMG's QP, after which they were integrated into the database. The cut-off date for the database is 28th April 2020. The current mineral resource represents the first NI 43-101 mineral resource at the Robinson zone.

For the mineral resource estimation, we used only hole CA1108 from the historic holes. In addition to the data quality control done by SGS, a downhole camera inspection on this hole was done by

GMG on November 2019, and confirmed the presence of massive silver mineralisation at depth 564 m.

GMG considers the database for CCW property to be valid and of sufficient quality to be used for the mineral resource estimate herein.

Mineral Resource Estimate

This technical report documents the mineral resource estimate (press release of May 28, 2020) for the Robinson zone discovery. The mineral resource estimate uses the last holes drilled from the surface (CS-19-08W1 to W4; CS-19-20. CS-19-21; CS-20-22 and CS-20-23) and one historical drill hole (CA1108). The maximum depth of the mineralized envelopes is around Z = -73 m (around 490 metres from the surface).

The mineral resource has been estimated in conformity with CIM Estimation of Mineral Resource and Mineral Reserves Best Practices Guidelines and are reported in accordance with Canadian Securities Administrators' National Instrument 43-101.

Mineral resource estimate using a cut-off grade of 258 AgEq g/t (Table 35).

Inferred mineral resource	Ag g/t	Co g/t	Cu g/t	Ni g/t	Pb g/t	Zn g/t	Ag Eq g/t	Tonnes	Ag Oz.	Ag Eq Oz.
7an a01 a	_	_	_	_	_		0.042	0.100	2.072.000	2.004.200
Zone01a	7,960	940	349	790	16	12	8,042	8,100	2,073,000	2,094,200
Zone01b	8,843	2,308	325	336	30	52	8,998	19,300	5,487,200	5,583,200
Zone02a	38	5,673	2,101	453	118	108	426	5,500	6,800	75,300
Total Inferred Mineral Resource	7 149	2 537	628	467	41	52	7 325	32 900	7 567 000	7 752 700

Notes:

- Mineral resources which are not mineral reserves do not have demonstrated economic viability. The estimate of
 mineral resources may be materially affected by environmental, permitting, legal, title, market or other relevant
 issues. The quantity and grade of reported inferred resources are uncertain in nature and there has not been
 sufficient work to define these inferred resources as indicated or measured resources.
- 2. The database used for this mineral estimate includes drill results obtained from historical (2011 one hole) to the recent 2019 drill program and wedges from the 2011 diamond drill hole.
- 3. Mineral Resource is reported with mineable shape cut-off grade equivalent to 125\$USD (258 g/t AgEq) including mining, shipping and smelting cost with recovery of 95%. The high-grade value of the mineral resources makes them direct shipping. Not all zones (mineable shapes) are above economic cut-off grade and zone 02b is a must-take material. The assay results are not capped as they are not considered as outliers at this stage and results are reproducible.
- 4. The geological interpretation of the mineralized zones is based on lithology and the mineralized intervals intersected by drill holes. The use of the borehole inspection camera provided a valuable geometric characterization of the mineralized intervals.
- 5. The mineral resource presented here was estimated with a block size of 1mE x 1mN x 1mZ.
- 6. The blocks were interpolated from equal length composites of 0.5m calculated from the mineralized intervals.
- 7. The minimum horizontal width of the mineralized envelopes includes dilution and is 1.3m.

16

- 8. The mineral estimation was completed using the inverse distance to the square methodology utilizing two passes. For each pass, search ellipsoids following the geological interpretation trends were used.
- 9. The Mineral Resource has been classified under the guidelines of the CIM Standards on Mineral Resources and Reserves. Definitions and Guidelines prepared by the CIM Standing Committee on Reserve Definitions in 2019 and adopted by CIM Council (2020), and procedures for classifying the reported Mineral Resources were undertaken within the context of the Canadian Securities Administrators NI 43-101.
- 10. To convert volume to tonnage a specific gravity of 3.4 tonnes per cubic metre was used. Results are presented in-situ without mining dilution.
- 11. This mineral resource estimate is dated May 28, 2020. Tonnages and Oz AgEq in the table above are rounded to nearest hundred. Numbers may not total due to rounding.

The Company will continue to advance, explore and de-risk the project with further engineering (metallurgical. mining) and environmental study & social community relation with locals and First Nations.

Interpretation and Conclusions

After conducting a detailed review of all pertinent information and completing the present mineral resource estimate, GoldMinds Geoservices concludes the following:

- The drillhole database is suitable enough for use in mineral resource estimation.
- The geological and grade continuity of mineralization in the Robinson zone is demonstrated and supported by assay results and downhole camera inspection.
- The present mineral resource estimate is classified as inferred resources. There are no indicated/measured resources at this time.
- The present mineral resource estimate is prepared for a potential underground scenario at a cut-off grade of 258 AgEq g/t Ag.

GoldMinds Geoservices considers the present mineral resource to be reliable, thorough, based on quality data, reasonable hypotheses, and parameters compliant with NI 43-101 requirements and CIM Definition Standards.

Recommendations

GoldMinds Geoservices recommends to CCW an exploration diamond drilling program in order to convert a portion of the Inferred resources to Indicated or Measured and also to increase the mineral resource estimate. GoldMinds Geoservices also recommends a trenching program and surface exploration mainly in the area with gold potential.

In addition to the exploration program GMG recommends geotechnical drillholes at CCW property and the following table shows the recommended works.

July 2020

Estimation of the exploration program at CCW property (Table 40).

Recommended works	All included cost
Surface diamond drill (5000 meters) at 150 per	
meter	750,000
Collar survey/density measurement	25,000
Metallurgical test works	50,000
Geotechnical holes (5 drillholes)	100,000
Trenching program and surface exploration works	250,000
Total	1,175,000

- The author suggests specific gravity measurement on the whole core sample length, ideally the whole core and match the from-to of the analysis for at least 5 holes of the next diamond drilling program which should allow conversion an adequate estimation of tonnage.
- The collar surveys are considered adequate for the purpose of a resource estimate, but the collars should be professionally surveyed with a total station to increase the accuracy of the elevation of the recent program.
- A topographic survey on all the property is highly recommended.
- Due to the difference in the character of ore from one mine to another in the Cobalt Camp, metallurgical tests will be required for this site-specific mineralisation at the Robinson zone.
- A hydrogeological study is recommended to reduce risks associated with ground water and better define the water management strategy.
- A geotechnical data collection program is recommended to include more parameters (fractures, joints, shearing, roughness, weathering, alteration, etc).

The author is of the opinion that the recommended work program and proposed expenditures are appropriate and believe that the estimated budget reasonably reflects the type and amount of contemplated activities.

July 2020

2 Introduction

2.1 Overview

Castle Mine property is located in Haultain and Nicol Townships in the main historic Gowganda Silver Mining Camp. The property is 100%owned by Canada Silver Cobalt Works (CCW, the "Company" or the "issuer").

CCW is a junior exploration company listed on the Toronto Venture Exchange ("TSXV") under the symbol CCW. Its head office and exploration office are at the same address:

3028 Quadra Court Coquitlam, BC V3B 5X6

In March 2020, Mr. Frank Basa, CCW's CEO, retained GoldMinds Geoservices to prepare a technical report (the "Technical Report") in accordance with Canadian Securities Administrators' National Instrument 43-101 Respecting Standards of Disclosure for Mineral Projects ("NI 43-101") and Form 43 101F1. The aim of the Technical Report is to present the mineral resource estimate at the Robinson zone.

GoldMinds Geoservices is an independent exploration and mining consulting firm based in Québec City, Québec (Canada).

2.2 Report Responsibility and Qualified Persons

The Technical Report was prepared by Mr. Merouane Rachidi, P.Geo., Ph.D., from GoldMinds Geoservices. He is independent and qualified person ("QP") as defined by NI 43-101.

Mr. Rachidi is a professional geologist in good standing with the PGO (No. 2998), OGQ (No. 1792) and APEGNB (No. L5769). He is author of the entire technical report.

The QP does not have, nor has he previously had, any material interest in the issuer or its related entities. The relationship with the issuer is solely a professional association between the issuer and the independent consultant.

2.3 Effective dates

The effective date of the mineral resource estimate is May 28, 2020. The cut-off date for the database is 28th April 2020. The current mineral resource represents the first NI 43-101 mineral resource of the Robinson zone.

July 2020

19

2.4 Sources of information

This report is based in part on internal company reports, government reports, maps and public information, as listed in Item 27.

The mineral resource estimate was prepared using information from the following:

- Exploration data (drill hole data and surface exploration data) collected by CCW.
- Internal and public technical documents provided by CCW.
- A database of historical and recent drilling compiled by CCW.
- QP visits to the Property and the core shack.
- Additional information from public domain sources (Ministry of Northern Development & Mines of Ontario's website).

To produce this report, GoldMinds Geoservices Inc. also obtained information from Doug Robinson, project geological engineer on the Castle property as well as Matthew Halliday, President, COO and VP- exploration at CCW.

The author reviewed and appraised the information used to prepare this Technical Report and believe that such information is valid and appropriate considering the status of the project and the purpose for which this Technical Report is prepared.

2.5 Site visit

Mr. Rachidi visited the property the last time from May 25 to June 6, 2020. Mr. Rachidi visited the issuer's core shack located at the property. He was accompanied by Matthew Halliday (President, COO and VP-Exploration).

During the site visit field data was verified with a visual inspection of surface drill pads, a check of drill collar location coordinates, the descriptions of lithologies, alteration and mineralisation.

2.6 Units and Currency

All measurements in this report are presented in "International System of Units" (SI) metric units, including metric tonne (tonne or t) or gram (g) for weight, metre (m) or kilometre (km) for distance, hectare (ha) for area, and cubic metre (m³) for volume.

A list of the abbreviations, acronyms and symbols used in this Technical Report provided in Table 1.

July 2020

Table 1: List of abbreviations

Au	Gold (chemical element)
cm	Centimeters
FA	Fire Assay
g	Grams
Ga	Billion years
CCW	Canada Silver Cobalt Works
GMG	GoldMinds Geoservices Inc.
g/t	Gram per metric tonne
ha	Hectares
kg	Kilograms
km	Kilometers
μm	Micrometers
m	Meters
Ma	Million years
Moz	Million ounces
Mt	Mega tonne
mm	Millimeters
NAD	North America Datum
NQ	Drill core size (47.6 mm in diameter)
NTS	National Topographic System
Oz	Troy ounce
Oz/t	Troy ounce per short ton
ppb	Parts per billion
ppm	Parts per million
SG	Specific Gravity
SM	Screen Metallic
tonne or t	Metric tonne
t/m3	Tonne per cubic meter
UTM	Universal Transverse Mercator
%	Percent sign
0	Degree
°C	Degree Celsius
°F	Degree Fahrenheit

3 Reliance on other experts

This report has been prepared by GoldMinds Geoservices Inc. for Canada Silver Cobalt Works Inc. The information, conclusions, opinions and estimates contained herein are based on:

Information available to GoldMinds Geoservices Inc at the time of the preparation of this Report with an effective date of 28th April 2020;

- Assumptions, conditions and qualifications as set forth in this report;

- Reports, and opinions supplied by Canada Silver Cobalt Works Inc.
- Data, reports and opinions supplied by Canada Silver Cobalt Works Inc., its consultants, and from public sources.
- Historical drilling database supplied by Canada Silver Cobalt Works. Historical data has been verified by GMG using the existing plans. GMG performed sufficient verification prior to including the historical data in the drillhole database.
- The topographic surface generated from a 2016 stereo image provided by the issuer. Some adjustments were made in order to remove trees from survey in some highly vegetated areas. The survey on these highly vegetated areas are not very accurate.

The author verified the Claims and Mining lease ownership on the Ministry of Northern Development & Mines of Ontario's website, and they are deemed to be active and in good standing for the purpose of this report.

This Report is intended to be used by Canada Silver Cobalt Works Inc. as a Technical Report with Canadian Securities Regulatory Authorities pursuant to provincial securities legislation. In addition, this report is for use by Canadian authorities. Except for the purposes contemplated under provincial securities laws, any other use of this Report by any third party is at the party's sole risk.

4 Property description and location

4.1 Location

The property is located in the province of Ontario south of Timmins and Matachewan (Figure 1). The property is located within the administration boundaries of Haultain, Nicol, Chown, Morel and Shillington Townships in the Larder Lake Mining Division. The Haultain property is centered at 519420 mE and 5280414 mN in National Topographic Map.

It comprises the National Topographic System (NTS) map sheet 41P10, as shown in Figure 2. The locations in this report and appendices are referenced to NAD 83 UTM coordinates zone 17.

July 2020

22

Figure 1: Project location map

4.2 Property description

The property covers a total area of 7,332.76 hectares and comprises one hundred and two (102) legacy claims in Shillington Township, eleven (11) legacy claims in Nicol Township, thirty-four (34) legacy claims in Morel Township, one hundred and eighty-two (182) legacy claims in Haultain Township and six (6) legacy claims in Nicol Township.

The property also comprises a total of 34 mining leases and two (2) License of Occupation (GG3879 and MLO657) in both townships Haultain and Nicol Townships (Figure 2). All these claims are 100%owned by Canada Silver Cobalt Works Inc. (TSX-V: CCW; Table 2). The Mining Leases and Licenses of Occupation cover a total area of 546.41 ha., (Table 3). Additional information regarding the status of the staked Legacy Claims are available in the table below, as viewed from MNDM public record of mining lands, the Mining Lands Administration System (MLAS) Web Site.

July 2020

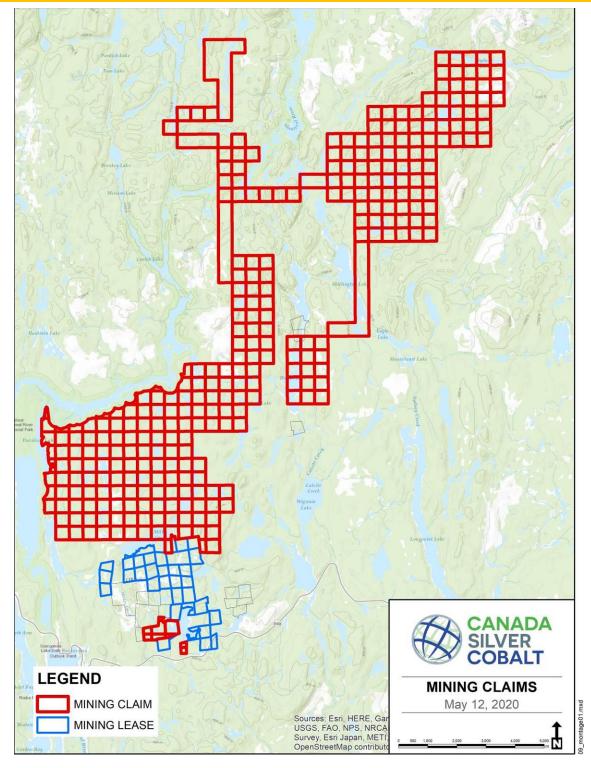


Figure 2: Claim and lease location of the Canada SilverCobalt Works property (May, 2020)

Table 2: Mining claims information, 100% owned by Canada Silver Cobalt Works Inc. as at May 11,2020

	Tarringhin / Anas	Tanuna ID	11, 2020	Mark Barringd	Mante Amelian	A marin canas ma
Legacy Claim Id	Township / Area	Tenure ID	Tenure Type	Work Required (CAN\$)	Work Applied (CAN\$)	Anniversary Date
4263351	NICOL	261755	всмс	200	600	2023-04-11
4263351	NICOL	244593	SCMC	200	600	2023-04-11
4263351	NICOL	143901	ВСМС	200	600	2023-04-11
4263351	NICOL	120555	ВСМС	200	600	2023-04-11
4263352	NICOL	327653	ВСМС	200	400	2021-09-15
4263352	NICOL	120556	SCMC	200	400	2021-09-15
4263352	NICOL	184587	SCMC	200	800	2023-06-23
4263360	HAULTAIN	342947	SCMC	200	400	2021-06-06
4263360	HAULTAIN	163316	SCMC	400	800	2021-06-06
4263360	HAULTAIN	297285	SCMC	200	600	2022-04-25
4263360	HAULTAIN	243116	SCMC	200	600	2022-04-25
4263360	HAULTAIN	230598	SCMC	400	1200	2022-04-25
4263360	HAULTAIN	184398	SCMC	200	600	2022-04-25
4263360	HAULTAIN	176009	SCMC	200	600	2022-04-25
4263360	HAULTAIN	146753	SCMC	200	600	2022-04-25
4263444	HAULTAIN	336673	SCMC	400	800	2021-06-06
4263444	HAULTAIN	191108	ВСМС	200	400	2021-06-06
4263444	HAULTAIN	335947	ВСМС	200	400	2021-07-11
4263444	HAULTAIN	240997	SCMC	400	800	2021-07-11
4263444	HAULTAIN	211840	SCMC	400	800	2021-07-11
4263444	HAULTAIN	201793	SCMC	400	800	2021-07-11
4263444	HAULTAIN	332993	SCMC	200	600	2022-03-25
4263444	HAULTAIN	271887	ВСМС	200	600	2022-03-25
4263444	HAULTAIN	264655	SCMC	400	1200	2022-03-25
4263444	HAULTAIN	253116	ВСМС	200	600	2022-03-25
4263444	HAULTAIN	253115	SCMC	400	1200	2022-03-25
4263444	HAULTAIN	205375	ВСМС	200	600	2022-03-25
4263444	HAULTAIN	205374	SCMC	200	600	2022-03-25
4263444	HAULTAIN	197915	SCMC	400	1200	2022-03-25
4263444	HAULTAIN	190580	всмс	200	600	2022-03-25
4263444	HAULTAIN	186522	SCMC	400	1200	2022-03-25
4263444	HAULTAIN	172303	всмс	200	600	2022-03-25
4263444	HAULTAIN	167946	всмс	200	600	2022-03-25
4263444	HAULTAIN	153272	всмс	200	600	2022-03-25
4263445	HAULTAIN	287776	всмс	200	600	2022-03-25
4263445	HAULTAIN	228485	ВСМС	200	600	2022-03-25
4263583	HAULTAIN	309967	ВСМС	200	400	2021-06-06
4263583	HAULTAIN	230599	SCMC	400	800	2021-06-06
4263583	HAULTAIN	222593	всмс	200	400	2021-06-06
4263583	HAULTAIN	316008	SCMC	400	800	2021-07-11
4263583	HAULTAIN	309968	SCMC	400	800	2021-07-11
4263583	HAULTAIN	242732	SCMC	400	800	2021-07-11

NI 43-101 Technical Report for Castle East Robinson zone – July 2020

Legacy Claim Id	Township / Area	Tenure ID	Tenure Type	Work Required (CAN\$)	Work Applied (CAN\$)	Anniversary Date
4263583	HAULTAIN	129370	SCMC	400	800	2021-07-11
4263583	HAULTAIN	316007	SCMC	400	1200	2022-03-25
4263583	HAULTAIN	297286	SCMC	400	1200	2022-03-25
4263583	HAULTAIN	278615	SCMC	400	1200	2022-03-25
4263583	HAULTAIN	250079	SCMC	400	1200	2022-03-25
4263583	HAULTAIN	242730	SCMC	400	1200	2022-03-25
4263583	HAULTAIN	230601	ВСМС	200	600	2022-03-25
4263583	HAULTAIN	230600	SCMC	400	1200	2022-03-25
4263583	HAULTAIN	163317	SCMC	400	1200	2022-03-25
4263583	HAULTAIN	130753	SCMC	400	1200	2022-03-25
4263583	HAULTAIN	129369	SCMC	400	1200	2022-03-25
4263583	HAULTAIN	242731	SCMC	400	1200	2022-07-11
4263583	HAULTAIN	278614	SCMC	400	1400	2023-03-25
4263583	HAULTAIN	222592	SCMC	400	1400	2023-03-25
4263587	NICOL	238172	BCMC	200	0	2020-12-04
4263587	NICOL	226752	всмс	200	0	2020-12-04
4276107	NICOL	201316	SCMC	200	400	2021-09-15
4276107	NICOL	137144	всмс	200	400	2021-09-15
4278558	HAULTAIN	332289	SCMC	400	800	2021-07-11
4278558	HAULTAIN	306323	SCMC	400	800	2021-07-11
4278558	HAULTAIN	306322	SCMC	400	800	2021-07-11
4278558	HAULTAIN	302871	SCMC	400	800	2021-07-11
4278558	HAULTAIN	290718	SCMC	400	800	2021-07-11
4278558	HAULTAIN	282672	SCMC	400	800	2021-07-11
4278558	HAULTAIN	282671	SCMC	400	800	2021-07-11
4278558	HAULTAIN	269346	SCMC	400	800	2021-07-11
4278558	HAULTAIN	261403	SCMC	400	800	2021-07-11
4278558	HAULTAIN	250664	SCMC	400	800	2021-07-11
4278558	HAULTAIN	210616	SCMC	400	800	2021-07-11
4278558	HAULTAIN	182972	SCMC	400	800	2021-07-11
4278558	HAULTAIN	160775	SCMC	400	800	2021-07-11
4278558	HAULTAIN	157916	SCMC	400	800	2021-07-11
4278558	HAULTAIN	134878	SCMC	400	800	2021-07-11
4278558	HAULTAIN	130665	SCMC	400	800	2021-07-11
4278559	HAULTAIN	305014	SCMC	400	800	2021-07-11
4278559	HAULTAIN	274515	SCMC	400	800	2021-07-11
4278559	HAULTAIN	259124	SCMC	400	800	2021-07-11
4278559	HAULTAIN	247124	SCMC	400	800	2021-07-11
4278559	HAULTAIN	247123	SCMC	400	800	2021-07-11
4278559	HAULTAIN	190422	SCMC	400	800	2021-07-11
4278559	HAULTAIN	157919	SCMC	400	800	2021-07-11
4278559	HAULTAIN	157918	SCMC	400	800	2021-07-11
4278559	HAULTAIN	157917	SCMC	400	800	2021-07-11
4278559	HAULTAIN	143796	SCMC	400	800	2021-07-11

NI 43-101 Technical Report for Castle East Robinson zone – July 2020

Legacy Claim Id	Township / Area	Tenure ID	Tenure Type	Work Required (CAN\$)	Work Applied (CAN\$)	Anniversary Date
4278559	HAULTAIN	138291	SCMC	400	800	2021-07-11
4278560	HAULTAIN	335948	всмс	200	400	2021-07-11
4278560	HAULTAIN	335946	SCMC	400	800	2021-07-11
4278560	HAULTAIN	315025	ВСМС	200	400	2021-07-11
4278560	HAULTAIN	277714	ВСМС	200	400	2021-07-11
4278560	HAULTAIN	277210	SCMC	400	800	2021-07-11
4278560	HAULTAIN	260544	SCMC	400	800	2021-07-11
4278560	HAULTAIN	193835	SCMC	400	800	2021-07-11
4278560	HAULTAIN	192371	SCMC	400	800	2021-07-11
4278560	HAULTAIN	145714	SCMC	400	800	2021-07-11
4278561	HAULTAIN	305899	SCMC	400	800	2021-07-11
4278561	HAULTAIN	276577	SCMC	400	800	2021-07-11
4278561	HAULTAIN	246806	SCMC	400	800	2021-07-11
4278561	HAULTAIN	222165	ВСМС	200	400	2021-07-11
4278561	HAULTAIN	341629	SCMC	400	1200	2022-07-11
4278561	HAULTAIN	325925	SCMC	400	1200	2022-07-11
4278561	HAULTAIN	325924	SCMC	400	1200	2022-07-11
4281720	HAULTAIN	246807	ВСМС	200	400	2021-07-11
4281720	HAULTAIN	216055	SCMC	400	800	2021-07-11
4281720	HAULTAIN	199589	ВСМС	200	400	2021-07-11
4281720	HAULTAIN	302870	SCMC	400	1200	2022-07-11
4281720	HAULTAIN	216054	SCMC	400	1200	2022-07-11
4281720	HAULTAIN	186857	SCMC	400	1200	2022-07-11
4281720	HAULTAIN	123386	SCMC	400	1200	2022-07-11
4281720	HAULTAIN	106296	SCMC	400	1200	2022-07-11
4281817	HAULTAIN	317336	SCMC	400	1200	2022-07-11
4281817	HAULTAIN	233446	SCMC	400	1200	2022-07-11
4281817	HAULTAIN	162127	SCMC	400	1200	2022-07-11
4281817	HAULTAIN	148583	SCMC	400	1200	2022-07-11
4281817	HAULTAIN	131997	SCMC	400	1200	2022-07-11
4282405	SHILLINGTON	324785	SCMC	400	800	2021-05-29
4282405	SHILLINGTON	294977	SCMC	400	800	2021-05-29
4282405	SHILLINGTON	288229	SCMC	400	800	2021-05-29
4282405	SHILLINGTON	228943	SCMC	400	800	2021-05-29
4282405	SHILLINGTON	202048	SCMC	400	800	2021-05-29
4282405	SHILLINGTON	202047	SCMC	400	800	2021-05-29
4282405	SHILLINGTON	114954	SCMC	400	800	2021-05-29
4282405	SHILLINGTON	100165	SCMC	400	800	2021-05-29
4283197	HAULTAIN	191107	SCMC	400	800	2021-06-06
4283197	HAULTAIN	174573	ВСМС	200	400	2021-06-06
4285132	HAULTAIN, MOREL	325406	SCMC	400	400	2021-11-09
4285132	MOREL	325405	SCMC	400	800	2021-11-09
4285132	MOREL	313183	SCMC	400	400	2021-11-09
4285132	HAULTAIN, MOREL	305880	SCMC	400	800	2021-11-09

NI 43-101 Technical Report for Castle East Robinson zone – July 2020

Legacy Claim Id	Township / Area	Tenure ID	Tenure Type	Work Required (CAN\$)	Work Applied (CAN\$)	Anniversary Date
Ciaiiii ia			1,400	(CAITO)	(CATT)	Dute
4285132	MOREL	305879	SCMC	400	800	2021-11-09
4285132	MOREL	305878	SCMC	400	800	2021-11-09
4285132	MOREL	305877	SCMC	400	400	2021-11-09
4285132	MOREL	305876	SCMC	400	800	2021-11-09
4285132	MOREL	305875	SCMC	400	400	2021-11-09
4285132	HAULTAIN	276564	SCMC	400	400	2021-11-09
4285132	MOREL	258111	SCMC	400	800	2021-11-09
4285132	HAULTAIN	257229	SCMC	400	800	2021-11-09
4285132	HAULTAIN	239917	SCMC	400	800	2021-11-09
4285132	HAULTAIN	222137	всмс	200	400	2021-11-09
4285132	HAULTAIN	202581	SCMC	400	800	2021-11-09
4285132	MOREL	202580	SCMC	400	400	2021-11-09
4285132	HAULTAIN	162747	SCMC	400	800	2021-11-09
4285132	MOREL	162746	SCMC	400	800	2021-11-09
4285132	MOREL	162745	SCMC	400	400	2021-11-09
4285132	MOREL	162744	SCMC	400	400	2021-11-09
4285132	HAULTAIN	112479	SCMC	400	400	2021-11-09
4285132	HAULTAIN, MOREL	112478	SCMC	400	800	2021-11-09
4285133	HAULTAIN	332095	SCMC	200	400	2021-11-09
4285133	HAULTAIN	315310	ВСМС	200	400	2021-11-09
4285133	HAULTAIN	315309	ВСМС	200	400	2021-11-09
4285133	CHOWN, HAULTAIN	268166	ВСМС	200	400	2021-11-09
4285133	HAULTAIN	249986	ВСМС	200	400	2021-11-09
4285133	HAULTAIN	249985	SCMC	400	800	2021-11-09
4285133	HAULTAIN	231458	ВСМС	200	400	2021-11-09
4285133	CHOWN, HAULTAIN	231457	SCMC	400	800	2021-11-09
4285133	HAULTAIN	224792	ВСМС	200	400	2021-11-09
4285133	CHOWN, HAULTAIN	212737	SCMC	400	800	2021-11-09
4285133	HAULTAIN	160080	ВСМС	200	400	2021-11-09
4285133	HAULTAIN	140594	SCMC	400	800	2021-11-09
4285133	HAULTAIN	140593	SCMC	400	821	2021-11-09
4285133	CHOWN, HAULTAIN	140592	SCMC	400	800	2021-11-09
4285133	CHOWN, HAULTAIN	113977	SCMC	400	800	2021-11-09
4286190	HAULTAIN	310963	SCMC	400	800	2021-06-06
4286190	HAULTAIN	292067	всмс	200	400	2021-06-06
4286190	HAULTAIN	255480	ВСМС	200	400	2021-06-06
4286190	HAULTAIN	236851	SCMC	400	800	2021-06-06
4286190	HAULTAIN	236850	SCMC	400	800	2021-06-06
4286190	HAULTAIN	235991	SCMC	400	800	2021-06-06
4286190	HAULTAIN	235990	SCMC	400	800	2021-06-06
4286190	HAULTAIN	217400	SCMC	400	800	2021-06-06
4286190	HAULTAIN	181428	SCMC	200	400	2021-06-06
4286190	HAULTAIN	124718	SCMC	400	800	2021-06-06
4286190	HAULTAIN	107776	SCMC	400	800	2021-06-06

NI 43-101 Technical Report for Castle East Robinson zone – July 2020

Legacy Claim Id	Township / Area	Tenure ID	Tenure Type	Work Required (CAN\$)	Work Applied (CAN\$)	Anniversary Date
4286191	HAULTAIN	331704	SCMC	400	800	2021-06-06
4286191		313922	SCMC	400	800	2021-06-06
4286191	HAULTAIN	277769	всмс	200	400	2021-06-06
4286191	HAULTAIN	259356	всмс	200	400	2021-06-06
4286191	HAULTAIN	223405	SCMC	400	800	2021-06-06
4286191	HAULTAIN	211904	SCMC	400	800	2021-06-06
4286191	HAULTAIN	203326	ВСМС	200	400	2021-06-06
4286191	HAULTAIN	203325	ВСМС	200	400	2021-06-06
4286191	HAULTAIN	192436	SCMC	400	800	2021-06-06
4286191	HAULTAIN	144628	SCMC	400	800	2021-06-06
4286192	HAULTAIN	241052	BCMC	200	400	2021-06-06
4286192	HAULTAIN	211903	BCMC	200	400	2021-06-06
4286192	HAULTAIN	193892	ВСМС	200	400	2021-06-06
4286192	HAULTAIN	159876	BCMC	200	400	2021-06-06
4286192	HAULTAIN	308378	SCMC	400	1200	2025-06-06
4286193	HAULTAIN	221023	BCMC	200	400	2021-06-06
4286193	HAULTAIN	117496	BCMC	200	400	2021-06-06
4286694	SHILLINGTON	325523	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	325522	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	313468	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	313467	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	313466	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	277389	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	276817	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	258846	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	230201	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	222932	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	222931	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	202781	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	162983	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	162982	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	162981	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	144827	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	117020	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	116965	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	100369	SCMC	400	800	2021-05-29
4286694	SHILLINGTON	100324	SCMC	400	800	2021-05-29
4286695	SHILLINGTON	325468	SCMC	400	800	2021-05-29
4286695	SHILLINGTON	313415	SCMC	400	800	2021-05-29
4286695	SHILLINGTON	313414	SCMC	400	800	2021-05-29
4286695	SHILLINGTON	313413	SCMC	400	800	2021-05-29
4286695	SHILLINGTON	258801	SCMC	400	800	2021-05-29
4286695	SHILLINGTON	229626	SCMC	400	800	2021-05-29
4286695	SHILLINGTON	229625	SCMC	400	800	2021-05-29

NI 43-101 Technical Report for Castle East Robinson zone – July 2020

Legacy Claim Id	Township / Area	Tenure ID	Tenure Type	Work Required (CAN\$)	Work Applied (CAN\$)	Anniversary Date
4286695	SHILLINGTON	222861	SCMC	400	800	2021-05-29
4286695	SHILLINGTON	210804	SCMC	400	800	2021-05-29
4286695	SHILLINGTON	202740	SCMC	400	800	2021-05-29
4286695	SHILLINGTON	162922	SCMC	400	800	2021-05-29
4286695	SHILLINGTON	156924	SCMC	400	800	2021-05-29
4286695	SHILLINGTON	156923	SCMC	400	800	2021-05-29
4286695	SHILLINGTON	127635	SCMC	400	800	2021-05-29
4286695	SHILLINGTON	116966	SCMC	400	800	2021-05-29
4286696	SHILLINGTON	326899	SCMC	400	800	2021-05-29
4286696	SHILLINGTON	326898	SCMC	400	800	2021-05-29
4286696	SHILLINGTON	314701	SCMC	400	800	2021-05-29
4286696	SHILLINGTON	314700	SCMC	400	800	2021-05-29
4286696	SHILLINGTON	314699	SCMC	400	800	2021-05-29
4286696	SHILLINGTON	260225	SCMC	400	800	2021-05-29
4286696	SHILLINGTON	231566	SCMC	400	800	2021-05-29
4286696	SHILLINGTON	231565	SCMC	400	800	2021-05-29
4286696	SHILLINGTON	177700	SCMC	400	800	2021-05-29
4286696	SHILLINGTON	102071	SCMC	400	800	2021-05-29
4286696	SHILLINGTON	102070	SCMC	400	800	2021-05-29
4286697	SHILLINGTON	326749	SCMC	400	800	2021-05-29
4286697	SHILLINGTON	278150	SCMC	400	800	2021-05-29
4286697	SHILLINGTON	223658	SCMC	400	800	2021-05-29
4286697	SHILLINGTON	204034	SCMC	400	800	2021-05-29
4286697	SHILLINGTON	164242	SCMC	400	800	2021-05-29
4286697	SHILLINGTON	158219	SCMC	400	800	2021-05-29
4286697	SHILLINGTON	158218	SCMC	400	800	2021-05-29
4286697	SHILLINGTON	115947	SCMC	400	800	2021-05-29
4286698	SHILLINGTON	326176	SCMC	400	800	2021-05-29
4286698	SHILLINGTON	312647	SCMC	400	800	2021-05-29
4286698	SHILLINGTON	279603	SCMC	400	800	2021-05-29
4286698	SHILLINGTON	279602	SCMC	400	800	2021-05-29
4286698	SHILLINGTON	279601	SCMC	400	800	2021-05-29
4286698	SHILLINGTON	278063	SCMC	400	800	2021-05-29
4286698	SHILLINGTON	259543	SCMC	400	800	2021-05-29
4286698	SHILLINGTON	223600	SCMC	400	800	2021-05-29
4286698	SHILLINGTON	211550	SCMC	400	800	2021-05-29
4286698	SHILLINGTON	203457	SCMC	400	800	2021-05-29
4286698	SHILLINGTON	164170	SCMC	400	800	2021-05-29
4286698	SHILLINGTON	158139	SCMC	400	800	2021-05-29
4286698	SHILLINGTON	145414	SCMC	400	800	2021-05-29
4286698	SHILLINGTON	117206	SCMC	400	800	2021-05-29
4286698	SHILLINGTON	101893	SCMC	400	800	2021-05-29
4286699	SHILLINGTON	339889	SCMC	400	800	2021-05-29
4286699	SHILLINGTON	327546	SCMC	400	800	2021-05-29

NI 43-101 Technical Report for Castle East Robinson zone – July 2020

Legacy Claim Id	Township / Area	Tenure ID	Tenure Type	Work Required (CAN\$)	Work Applied (CAN\$)	Anniversary Date
4286699	SHILLINGTON	280934	SCMC	400	800	2021-05-29
4286699	SHILLINGTON	280298	SCMC	400	800	2021-05-29
4286699	SHILLINGTON	280297	SCMC	400	800	2021-05-29
4286699	SHILLINGTON	232229	SCMC	400	800	2021-05-29
4286699	SHILLINGTON	224932	SCMC	400	800	2021-05-29
4286699	SHILLINGTON	213420	SCMC	400	800	2021-05-29
4286699	SHILLINGTON	194266	SCMC	400	800	2021-05-29
4286699	SHILLINGTON	116585	SCMC	400	800	2021-05-29
4286699	SHILLINGTON	116584	SCMC	400	800	2021-05-29
4286699	SHILLINGTON	102073	SCMC	400	800	2021-05-29
4286700	SHILLINGTON	297607	SCMC	400	800	2021-05-29
4286700	SHILLINGTON	297606	SCMC	400	800	2021-05-29
4286700	SHILLINGTON	268247	SCMC	400	800	2021-05-29
4286700	SHILLINGTON	260230	SCMC	400	800	2021-05-29
4286700	SHILLINGTON	177702	SCMC	400	800	2021-05-29
4286700	SHILLINGTON	164871	SCMC	400	800	2021-05-29
4286700	SHILLINGTON	158875	SCMC	400	800	2021-05-29
4286700	SHILLINGTON	158874	SCMC	400	800	2021-05-29
4286700	SHILLINGTON	158873	SCMC	400	800	2021-05-29
4286700	SHILLINGTON	116082	SCMC	400	800	2021-05-29
4286700	SHILLINGTON	102074	SCMC	400	800	2021-05-29
4286700	SHILLINGTON	268246	SCMC	400	1200	2022-05-29
4286738	HAULTAIN	300478	ВСМС	200	600	2022-04-27
4286738	HAULTAIN	263820	ВСМС	200	600	2022-04-27
4286738	HAULTAIN	204562	BCMC	200	600	2022-04-27
4286738	HAULTAIN	204538	BCMC	200	600	2022-04-27
4286738	HAULTAIN	111841	BCMC	200	600	2022-04-27
4286739	HAULTAIN	318287	SCMC	200	400	2021-04-27
4286739	HAULTAIN	311899	SCMC	200	400	2021-04-27
4286739	HAULTAIN	237916	SCMC	400	800	2021-04-27
4286739	HAULTAIN	209310	SCMC	400	800	2021-04-27
4286739	HAULTAIN	201289	SCMC	200	400	2021-04-27
4286739	HAULTAIN	171329	SCMC	200	400	2021-04-27
4286739	HAULTAIN	171328	SCMC	200	400	2021-04-27
4286739	HAULTAIN	156659	SCMC	200	400	2021-04-27
4286739	HAULTAIN	137115	SCMC	200	400	2021-04-27
4286739	HAULTAIN	137114	SCMC	200	400	2021-04-27
4286740	HAULTAIN	336288	SCMC	200	400	2021-04-27
4286740	HAULTAIN	300297	SCMC	200	400	2021-04-27
4286741	HAULTAIN	287927	SCMC	200	400	2021-04-27
4286741	HAULTAIN	154607	SCMC	200	400	2021-04-27
4286741	HAULTAIN	192092	BCMC	200	600	2022-04-27
4286741	HAULTAIN	154608	BCMC	200	600	2022-04-27
	CHOWN,SHILLINGTON	545987	MCMC	3600	0	2021-03-20

Legacy Claim Id	Township / Area	Tenure ID	Tenure Type	Work Required (CAN\$)	Work Applied (CAN\$)	Anniversary Date
	MOREL	510917	SCMC	400	400	2021-04-10
	MOREL, SHILLINGTON	545997	MCMC	800	800	2022-03-20
	MOREL	545996	MCMC	1200	1200	2022-03-20
	MOREL	545995	SCMC	400	400	2022-03-20
	MOREL	545994	SCMC	400	400	2022-03-20
	MOREL	545993	SCMC	400	400	2022-03-20
	MOREL	545992	SCMC	400	400	2022-03-20
	MOREL	545991	SCMC	400	400	2022-03-20
	MOREL	545990	SCMC	400	400	2022-03-20
	MOREL	545989	SCMC	400	400	2022-03-20
	MOREL	545988	MCMC	2400	2400	2022-03-20
	MOREL	510916	SCMC	400	800	2022-04-10
	MOREL	510915	SCMC	400	800	2022-04-10
	MOREL	510914	SCMC	400	800	2022-04-10
	MOREL	510913	SCMC	400	800	2022-04-10
	MOREL	510912	SCMC	400	800	2022-04-10
	MOREL	510911	SCMC	400	800	2022-04-10
	MOREL	510910	SCMC	400	800	2022-04-10
	MOREL	510909	SCMC	400	800	2022-04-10
	MOREL	510908	SCMC	400	800	2022-04-10
	MOREL	510907	SCMC	400	800	2022-04-10
	CHOWN	593291	SCMC	400	0	2022-05-29
	CHOWN	593290	SCMC	400	0	2022-05-29
	CHOWN	593289	SCMC	400	0	2022-05-29
	CHOWN	593288	SCMC	400	0	2022-05-29
	CHOWN	593287	SCMC	400	0	2022-05-29
	CHOWN	593286	SCMC	400	0	2022-05-29
	CHOWN	593285	SCMC	400	0	2022-05-29
	CHOWN	593284	SCMC	400	0	2022-05-29
	CHOWN	593283	SCMC	400	0	2022-05-29
	CHOWN	593282	SCMC	400	0	2022-05-29
	CHOWN	593281	SCMC	400	0	2022-05-29
	CHOWN	593280	SCMC	400	0	2022-05-29
	MOREL,YARROW	530507	MCMC	4000	8000	2022-09-03

^{*}SCMC refers to Single Cell Mining Claim; BCMC refers to Boundary Cell Mining Claim; MCMC refers to Multi-cell Mining Claim

Table 3: Mining Land Tenure information, 100% owned by Canada Silver Cobalt Works Inc.

Lease number	Claim Number	Туре	Township/Area	Disposition	Area (ha)
LEA-19672	HS369	Lease	HAULTAIN	Mining and Surface Rights	20.11

Lease number	Claim Number	Туре	Township/Area	Disposition	Area (ha)
LEA-19673	HS364	Lease	HAULTAIN	Mining and Surface Rights	15.86
LEA-19674	HS366	Lease	HAULTAIN	Mining and Surface Rights	8.62
LEA-19675	HS367	Lease	HAULTAIN	Mining and Surface Rights	16.27
LEA-19676	GG3879	Lease	NICOL	Mining and Surface Rights	0.55
LEA-19677	HS363	Lease	NICOL	Mining and Surface Rights	15.70
LEA-19678	HS368	Lease	HAULTAIN	Mining and Surface Rights	15.66
LEA-19679	HS357	Lease	HAULTAIN	Mining and Surface Rights	15.30
LEA-19680	HS355	Lease	HAULTAIN	Mining and Surface Rights	20.68
LEA-19681	HS354	Lease	HAULTAIN	Mining and Surface Rights	17.04
LEA-19682	HS365	Lease	HAULTAIN	Mining and Surface Rights	17.32
LEA-19683	HS350	Lease	HAULTAIN	Mining and Surface Rights	15.86
LEA-19684	HS352	Lease	HAULTAIN	Mining and Surface Rights	13.15
LEA-19685	HS353	Lease	HAULTAIN	Mining and Surface Rights	15.05
LEA-19694	HS362	Lease	NICOL	Mining and Surface Rights	6.56
LEA-19695	RSC105	Lease	NICOL	Mining and Surface Rights	15.05
LEA-19696	LM107	Lease	HAULTAIN	Mining and Surface Rights	15.05
LEA-19697	LM108	Lease	HAULTAIN	Mining and Surface Rights	16.27
LEA-19698	LM109	Lease	HAULTAIN	Mining and Surface Rights	12.91
LEA-19699	LM110	Lease	HAULTAIN	Mining and Surface Rights	15.46
LEA-19700	RSC99	Lease	HAULTAIN	Mining and Surface Rights	18.64
LEA-19701	HS356	Lease	NICOL	Mining and Surface Rights	21.73
LEA-19702	HS358	Lease	NICOL	Mining and Surface Rights	10.60
LEA-19703	HS359	Lease	NICOL	Mining and Surface Rights	19.63
LEA-19704	HS360	Lease	NICOL	Mining and Surface Rights	17.20
LEA-19705	HS361	Lease	NICOL	Mining and Surface Rights	15.38
LEA-19706	RSC104	Lease	HAULTAIN	Mining and Surface Rights	16.79
LEA-19707	RSC100	Lease	HAULTAIN	Mining and Surface Rights	17.93
LEA-19708	RSC101	Lease	HAULTAIN	Mining and Surface Rights	16.56

Lease number	Claim Number	Туре	Township/Area	Disposition	Area (ha)
LEA-19709	LM111	Lease	NICOL	Mining and Surface Rights	18.98
LEA-19712	LM106	Lease	HAULTAIN	Mining and Surface Rights	15.54
LEA-19713	RSC102	Lease	HAULTAIN	Mining and Surface Rights	16.78
LEA-20049	LM105	Lease	HAULTAIN	Mining and Surface Rights	15.99
LEA-20053	GG3652	Lease	NICOL	Mining and Surface Rights	8.66
MLO-1379	GG3879	Mining Licence of Occupation	NICOL	Mining Rights	0.20
MLO-657	MLO657	Mining Licence of Occupation	NICOL	Mining Rights	45.33

4.3 Mineral rights and other permits

The mining leases (total of 34 mining leases) and two (2) License of Occupation (GG3879 and MLO657) provide surface rights and access to the property. The status of the mining titles for the Property, provided to the QP by the issuer, can be verified in MENDM (Ministry of Energy, Northern Development and Mines). All claims and mining leases are in good standing at the moment of writing this report. The author is not aware of any environmental liabilities on the claims. The list of claims constituting the Property is presented in Table 2.

Exploration work permits were required and received under the Mining Act to conduct the exploration programs being proposed or just completed. If the Company undertakes work activities closer than 60 metres from a watercourse, makes improvements to the access trail, or expands proposed stripping trenching activities to include the collection of a bulk sample, additional permits may be required. Under the Occupational Health and Safety Act & Regulation for Mine and Mining Plants, notification of diamond drilling must be provided to the Ministry of Labour prior to commencement of work.

4.4 Royalties

All these claims and mining leases are 100%owned by Canada Silver Cobalt Works Inc. (TSX-V: CCW).

Gold Bullion (now Granada Gold Mine) acquired the Castle property pursuant to a purchase and sale agreement with Milner Consolidated Silver Mines Ltd, dated December 2, 2006 (Milner Agreement). The purchase price paid by Gold Bullion for the Castle Silver Mine property was \$25,000. In addition, commencing two years from the effective date of the Milner Agreement, Gold Bullion is required to make additional payments to Milner Consolidated in the form of royalties on all future production from the Castle Silver mine property, subject to a minimum annual payment of

\$15,000. To the author's knowledge, payments have been made every November since then. The royalty payable by Gold Bullion is determined by reference to sale revenues, calculated and payable quarterly as set out in the Milner Agreement.

Castle Silver Mines Inc (the Corporation) (now Canada Silver Cobalt Works Inc.) was incorporated on March 10, 2011 pursuant to the Canada Business Corporation Act. It was constituted with the intention of taking over the silver assets and exploration activities currently carried on by Gold Bullion. The property to be transferred by Gold Bullion to the Corporation comprises Gold Bullion's sole silver exploration property and after such transfer, Gold Bullion does not intend to be directly involved in silver exploration.

The Corporation and Gold Bullion entered into a Purchase and Sale Agreement dated as of August 12, 2011 with respect to the Castle Silver Mine property. The Purchase and Sale Agreement provided, among other things, that:

- The deemed purchase price for the Castle Silver Mine property is \$2,925,000, payable by the Corporation through the issuance on the closing date of 9,750,000 common shares to Gold Bullion at a deemed price of \$0.30 per share;
- The closing of the acquisition of the Castle Silver Mine property took place on November 14, 2011;
- The Corporation will pay to Milner Consolidated Silver Mines Ltd. the royalties, if any, contemplated by the Milner Agreement for and on behalf of Gold Bullion and otherwise perform in accordance with their terms all of the obligations of Gold Bullion under the Milner Agreement; the royalty is a sliding-scale royalty on silver production, which will start from 3% when the price of silver is US\$15 or lower per troy ounce and up to 5% when the price of silver is greater than US\$30 per troy ounce and a 5% gross overriding royalty on the sale of products derived from the property with a minimum annual payment of \$15,000 in the form of royalties on all future production from the property.

Other obligations consist of annual payments comprised of 2% of all direct costs incurred on exploration on the Canada Silver Cobalt Works property which is payable to the Matachewan First Nation based on agreements with that Community. In addition, as part of an existing agreement, Gold Bullion (now Granada Gold Mine Inc.) will retain the right to earn a 1% NSR on all Canada Silver Cobalt Works' properties, which NSR will be distributed to shareholders of Granada Gold Mine in the form of dividends, payable in cash.

July 2020

5 Accessibility, climate, local resources, infrastructure and physiography (Item 5)

5.1 Accessibility

The Robinson Zone property is located within the administration boundaries of Haultain and Nicol Townships in the Larder Lake Mining Division. It is located approximately 4 km northeast of the rural community of Gowganda and 36 km west of Elk Lake (Figure 3 and Figure 4).

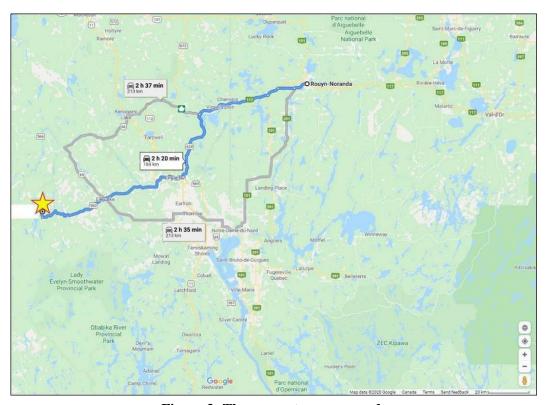


Figure 3: The property access roads

Access to the Castle Mine Site from Elk Lake is via Hwy 560 west for approximately 36km. Elk Lake is accessible from either New Liskeard to the east along Hwy 65W or from Kirkland Lake to the northeast via Hwy 66 west to Matachewan then Hwy 65 south to Elk Lake. The mine road turns north from Hwy 560 at a point described as UTM zone 17 T 519515E 5277459N. Head along mine road to a fork at a point 2.7km north of Hwy 560. The left fork veers NW and reaches the adit at 420m from the fork. The right fork veers NE and reaches the shaft area at 330m from the fork. The mine road is in excellent condition.

July 2020

36

Figure 4: Project access from the Ontario Highway 560 (Google Map, source)

5.2 Climate

The area experiences four main seasons: spring, summer, fall and winter. Spring conditions occur between the months of April and June and consist of warming temperatures that see freezing conditions at night and melting conditions in the daytime resulting in melt water run-off of the winter snowpack.

Meteorological information regarding the area are collected at the Timmins Victor Power A station, located at the airport of Timmins, Ontario (Figure 5). In the following tables (Table 4 and Table 5) were presented the monthly temperature and precipitation data compilation between 1981 and 2010.

Table 4: Monthly temperature data at Timmins Victor Power Airport

	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sept.	Oct.	Nov.	Dec.	Year
Avg. Temperature (°C)	-16.8	-14	-7.4	1.8	9.6	14.9	17.5	16	11.1	4.4	-3.4	-11.9	1.8
Daily Max (°C)	-10.6	-7.2	-0.6	0.8	16.6	21.9	24.2	22.5	17.1	9	0.6	-6.9	7.9
Daily Min (°C)	-23	-20.7	-14.2	-4.5	2.5	7.8	10.7	9.4	5.2	-0.3	-7.4	-17	-4.3

Table 5: Monthly precipitation data at Timmins Victor Power Airport

	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sept.	Oct.	Nov.	Dec.
Rainfall (mm)	3.2	1.7	14.1	30.1	62.3	83.2	90.9	81.6	83.7	68.1	30.9	8.5
	Annual sum: 558.3											
Snowfall (cm)	57.8	45.9	44.8	27.2	5	0.2	0	0	1	15.1	49	65.2
	Annual su	m: 311.3						-		,		
Precipitation (mm)	51.8	41.3	54.5	56.2	67.4	83.4	90.9	81.6	84.7	82.5	75.9	64.5
	Annual su	m: 834.6				·					_	

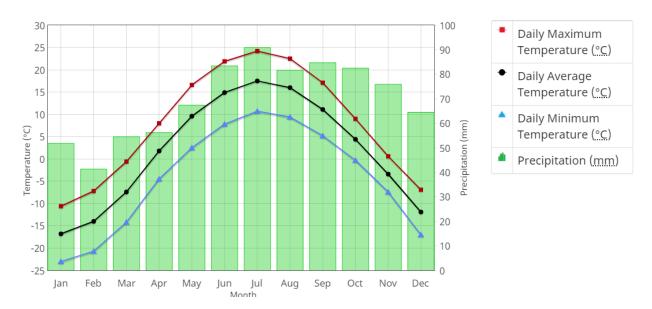


Figure 5: Temperature and precipitation graph for 1981 to 2010, Timmins Victor Power Airport station

5.3 Local resources

Basic supplies such as food and limited accommodation are available at Gowganda. The largest nearby community is Kirkland Lake, located 77 km northeast of Gowganda. The special items can be purchased from Kirkland Lake.

Mining in the region has existed for a century and skilled labour is readily available. The mining manpower resides in nearby villages (Gowganda, Elk Lake, Earlton, Englehart, Matachewan, Kirkland Lake, Timmins and New Liskeard). The implication of the local manpower in the CCW project will benefit the local economy, which is currently almost entirely driven by sustainable forest industry.

The field exploration operating season is possible on a full year basis, however, due to additional costs associated with road maintenance and reduced efficiency of field work in winter, the best exploration time covers 8 Months from April to November. These limits vary from one year to another and depends on the snow cover and timing of thaw periods.

5.4 Infrastructure

The property is easily accessible by a well-maintained gravel road. The property is close to the Gowganda rural community and unincorporated place in geographic Nicol Township, Timiskaming District in northeastern Ontario.

Gowganda is located on the shores of Gowganda Lake, has a thriving tourist industry with numerous tourist camps catering mainly to hunters, fishermen and mining exploration crews. Services available include meals and lodgings, outfitting, and purchase of basic supplies including

fuel. The town was founded after a major discovery of silver was made following the discoveries in Cobalt in 1903 and Elk Lake in 1908. By 1910, seven silver mines were in operation in Gowganda and the population of the town had reached approximately 5,000. A fire destroyed most of the community in 1911. The last silver mine closed in 1972, with the exception of a short period of silver production from the Castle Mine in most of the 1980's (1979-1988). Since then the population has dwindled. Current population is approximately 100.

Many unused structures remain in Gowanda that could be utilized for accommodations and or office space.

5.5 Physiography

The area has moderate topography with an average of 385m and the maximum being attained just to the west of Flatstone Lake where a ridge of Nipissing Diabase reaches an elevation of 460 m (1,500 feet) above sea level. The area is mainly covered by rocky knolls with apparent boulder till consisting primarily of sandy soil dominated by cobbles to boulders. The boulders are commonly tightly packed in interstitial pebble, sandy soil.

North-trending hills of similar elevation, comprised of Gowganda Formation rocks, occur in western Milner Township. These two examples illustrate, in part, the generalization that areas underlain by Middle Precambrian rocks are more rugged than those underlain by Early Precambrian rocks. In the latter, hills are lower and more rounded.

All of the drainage in the map area belongs to the Montreal River system. The main tributaries of the Montreal River are Wapus Creek, Miller Creek, and Calcite Creek, all of which join the Montreal River north.

The forest cover consists of coniferous and mixed-wood forests composing the Boreal region of northern Ontario. The latter consists of diversified tree types, including balsam fir, jack pine, black spruce, poplar, maple, white cedar and alders. The trees under 10 cm diameter appear to be dominated by balsam fir.

6 History (Item 6)

6.1 Previous mining and exploration work

The first ore production at the Gowganda camp came from the Bartlett claims west of Gowganda Lake in Milner Township. By 1910, several properties in this area and around the Miller Lake basin were shipping ore. The village of Gowganda was built around the north end of Gowganda Lake.

Gowganda had a post-office, bank, hotels, tourist camps, grocery stores and gas stations (Moore 1955). Regarding previous geological and geophysical work, information is summarised in the following table (Table 6).

Work performed	Author	Year	Additional information
Mapping	W.H. Collins	1913	Scale of 1:253,440
Mapping	A.G. Burrows	1921	Scale of 1:63,360
Mapping	A.G. Burrows	1926	Revision; scale of 1:31,680
Mapping	E.S. Moore's	1955	Scale of 1:31,680
Aeromagnetic mapping	Geological Survey of Canada	1956	Scale of 1:63,360
Aeromagnetic mapping	Geological Survey of Canada	1970	Scale of 1:63,360 and 1:31,680

Table 6: Historical geological and geophysical works (Mcllwaine, 1978)

By 1925 the Gowganda area had produced 8,420,509 ounces of silver from 14 properties, with over half of this coming from the Miller Lake O'Brien mine. Second to the Miller Lake O'Brien was the Castle Trethewey; the Millerett produced 611,822 ounces of silver and 5,000 pounds of cobalt from 667 tons of ore and concentrates. The Mann, Reeve Dobie, Tonopah (Walsh Morrison), Bartlett (Crews McFarlan), Bonsall, Boyd Gordon, Miller Lake Everett, Welch, and Wigwam were minor producers, with the Mann, Reeve Dobie, and Tonopah the only ones producing more than 45,000 ounces of silver. Nearly all of them had closed by 1925.

The Miller Lake O'Brien operated until 1939 when it was closed for the duration of the war; 17,555,646 ounces of silver had been produced to that date. During the war years lessees were reported to have taken 620,000 ounces of silver from the mine. Siscoe Metals of Ontario Limited purchased the property in 1945 and reopened the mine until it closed.

New Morrison Mines Limited (now Consolidated Morrison Explorations Limited) operated the Morrison mine from August 1953 to the fall of 1954 on a profit-sharing basis with Lost Lake Mines Limited.

Castle Trethewey Mines Limited operated their mine from 1920 to 1931, when, like many other silver mines, it closed because of the depression. The mine was reopened in 1948 through the Capitol Shaft with production commencing in 1951.

McIntyre Porcupine Mines Limited purchased the property in 1959 but the mine was closed in 1965.

In 1967 all of McIntyre's property in the Gowganda area was leased to Siscoe and exploration in the old workings met with success. Siscoe also had an agreement with Zenmac Metal Mines Limited for the mining of a deposit east of Milner Lake but this operation did not come up to expectations and the mine was closed in 1970.

6.2 Historical resources

Information regarding the historic silver and cobalt production from Haultain and Nicol Townships are presented in Table 7, as reported in Ontario Department of Mines, Mineral Resource Circular No.10, by Sergiades (1968). The figure below (Figure 6) show the location of the mines that were in production and zones subject of exploration at the Gowganda area.

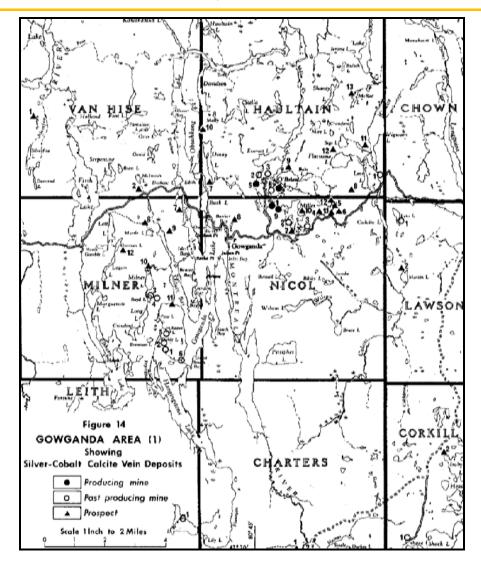


Figure 6: Gowganda Area Showing Silver-Cobalt Calcite Vein Deposits (modified after Sergiades, 1968)

Table 7: Production from Miller Lake Basin (Sergiades, 1968)

Reference in MRC no.10	Township	Historical Name	Owner (circa 1968)	Commodity	Ag (troy Oz)	Co (lbs)	Ni (lbs)	Additional information
#5; p. 370, 374-375	Haultain	Bonsall Mine	Siscoe Mines Ltd.	Silver	141,856	-	-	1910-1920; 1967
#4; p. 370, 376-377	Haultain	Capitol Mine (Castle-Trethewey	McIntyre Porcupine Mines Ltd.	Silver; Cobalt	10,837,181	209,474	18,826	1951-1964
#3; p. 370, 378-379	Haultain	Castle - Tretheway Mine	McIntyre Porcupine Mines Ltd.	Silver; Cobalt	6,461,021	229,847		1920-1930
#2; p. 370, 380-381	Haultain	Miller Lake Everett Mine	McIntyre Porcupine Mines Ltd.	Silver; Cobalt	3,461	-		1925 (4 months in operation)
#6; p. 370, 382-383	Haultain	Millerett Mine	Siscoe Mines Ltd.	Silver; Cobalt	611,822	5,000		1910-1912
#10; p. 370, 384-385	Haultain	Wigwam Silver Mines Ltd.	Tormont Mining Ltd.	Silver; Cobalt	896	-		1923
#1; p. 370, 402-403	Nicol	Miller Lake O'Brien Mine	Siscoe Mines Ltd.	Silver; Cobalt	36,834,404	785,760		1910-1965
#3; p. 370, 404-405	Nicol	Morrison Mine	Consolidated Morrison Explor. Ltd.	Silver; Cobalt	719,201	22,018		1930-1954
#2; p. 370, 408-409	Nicol	Walsh Mine	McIntyre Porcupine Mines Ltd.	Silver; Cobalt	453,424	3,555		1925-1927; 1940
#9; p. 370, 400-401	Nicol	Castle No.1 Shaft Mine	McIntyre Porcupine Mines Ltd.	Silver; Cobalt	Included i	in other		
					56,063,266	1,255,654		

Six mines in Milner Township (West of Gowganda) produced 234,923 oz of Silver from the Milner Lake Nipissing diabase cone dike (McIlwaine, 1978).

Table 8: Silver production Milner Township (McIlwaine 1978)

Mine	Production Oz Ag
Bartlett	20,219
Boyd-Gordon	4,678
Mann	118,942
Reeve-Dobie	88,584
South Bay	1,500
Welch	1,000
Total	234,923

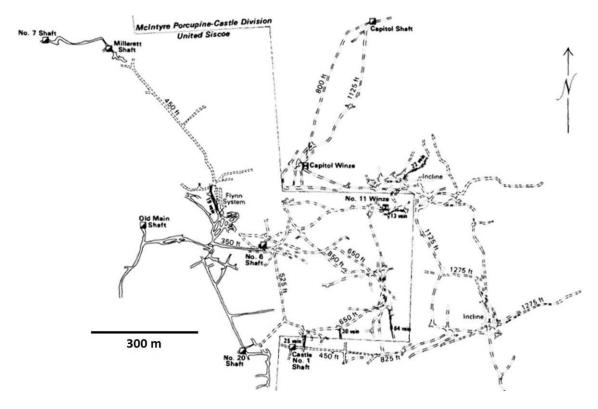


Figure 7: Partial underground plans of Miller Lake O'Brien, Castle N0.1 Shaft, and the Capitol Mines, in the Annual Report of Siscoe Mines Limited, 1967

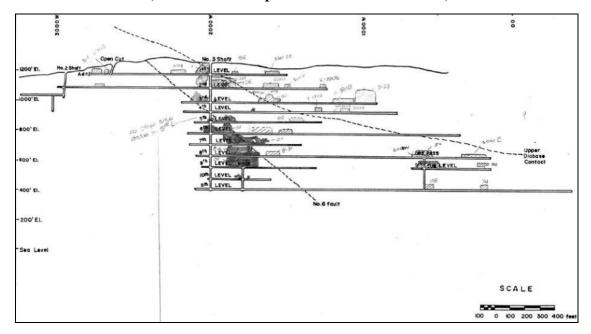


Figure 8: Section W-E showing the underground works at Castle Mine

July 2020

43

7 Geological setting (Item 7)

7.1 Regional geology

The Gowganda area comprises, in part, the townships of Haultain and Nicol in the district of Timiskaming. The village of Gowganda is about 83 km (52 miles) west-northwest of New Liskeard.

The first mapping in the area was done by W.H. Collins (1913) at a scale of 1 inch to 4 miles (1:253,440). Later more detailed mapping was done by A.G. Burrows (1921) at a scale, 1 inch to 1 mile (1:63,360). Aeromagnetic maps of the area have been published by the Geological Survey of Canada (GSC 1956a and b) at a scale, 1 inch to 1 mile (1:63,360).

Gowganda, along with South Lorrain (Mcllwaine 1970), is one of the more important satellite silver camps of the Timiskaming silver area. These camps arose owing to the more widespread prospecting for silver deposits following the rich discoveries in Cobalt in 1903.

The Gowganda area is near the northwestern edge of the Cobalt Embayment of the Superior Structural Province of the Canadian Shield. Several areas of Precambrian rocks are exposed and represent inliers in the Middle Precambrian cover with the exception of the metavolcanic assemblage exposed inside the Miller Lake diabase basin. The Nipissing Diabase is of great importance as it is closely related to the silver deposits for which the area is well-known.

The rocks of the area are readily divisible into four major units as follows:

- Late gabbroic rocks (Nipissing Diabase and later dikes);
- Cobalt Group Sedimentary rocks;
- Granitic intrusive rocks;
- Metavolcanics rocks with associated intrusive and sedimentary rocks including iron formation.

The area is underlain mainly by Middle Precambrian Huronian Supergroup sedimentary rocks which are relatively flat-lying, mildly metamorphosed, and intruded by several subcircular gabbroic intrusions of Nipissing Diabase. The metamorphism of the Huronian rocks was probably caused by the same tectonic events which deformed the Huronian rocks along the North Shore of Lake Huron (Card et al. 1970).

Deposition of Huronian Supergroup rocks followed a period of erosion; the Cobalt Group, locally, is represented by the Gowganda, and Lorrain Formations. Feldspathic arenite, feldspathic greywacke, and paraconglomerate are the most common lithologies in the Gowganda Formation. Laminated argillite of the Gowganda Formation, Firstbrook Member are present locally. Sedimentation of this unit was controlled, in part, by north-trending fault scarps which were a result of continued movement along the fractures which were the loci of intrusion of the early diabase dikes (McIlwaine, 1978).

July 2020

44

Silver mineralization, with associated cobalt-nickel-iron arsenides, occurs in carbonate veins, mainly in the Nipissing Diabase. Over 60,000,000 ounces of silver have been won from the area with two thirds of this coming from the Miller Lake O'Brien Mine.

CENEZOIC
QUARTERNARY
RECENT
Swamp, lake, stream deposits
PLEISTOCENE
Glacial deposits
UNCONFORMITY

PRECAMBRIAN

LATE PRECAMBRIAN (?) MAFIC INTRUSIVE ROCKS

Olivine diabase, porphyritic olivine diabase, diabase

INTRUSIVE CONTACT

MIDDLE PRECAMBRIAN (APHEBIAN)

MAFIC INTRUSIVE ROCKS (NIPISSING DIABASE)

Pyroxene gabbro, amphibole gabbro, granophyre

INTRUSIVE CONTACT

HURONIAN SUPERGROUP

COBALT GROUP

Lorrain Formation

Micaceous sandstone, feldspathic sandstone, greywacke, quartzose sandstone, ferruginous sandstone conglomerate

Gowganda Formation

Firstbrook Member

Laminated argillite, quartzite

Coleman Member

Feldspathic greywacke, feldspathic sandstone, arkose, conglomerate, ferruginous sandstone, breccia, argillite, siltstone, protoquartzite, lithic greywacke

UNCONFORMITY

EARLY PRECAMBRIAN

MAFIC INTRUSIVE ROCKS (MATACHEWAN DIABASE)

Diabase, porphyritic diabase

INTRUSIVE CONTACT

FELSIC INTRUSIVE ROCKS

Trondhjemite, porphyritic trondhjemite, quartz diorite, syenodiorite, contaminated zone, pegmatite dikes, feldspar porphyry dikes

INTRUSIVE CONTACT

MAFIC AND ULTRAMAFIC INTRUSIVE ROCKS

Metagabbro, serpentinized dunite

INTRUSIVE CONTACT

FELSIC METAVOLCANICS

Dacite, porphyritic dacite, tuff

MAFIC TO INTERMEDIATE METAVOLCANICS

Basalt, andesite, amphibolite, layered amphibolite, gabbroic flows, amygdaloidal basalt, pillow lava, pyroclastic rocks, andesite porphyry,

schists, sedimentary rocks

From: Mcllwaine 1978

Figure 9: Stratigraphy for the Gowganda Lake and the Miller Lake Silver Area

Figure 9, presents the stratigraphic units in more details, Figure 10, shows the geology of the property. The main exposures of mafic metavolcanics are in south-central Van Hise Township, in southwest and central Haultain Township, within the Miller Lake diabase basin, which straddles the

Haultain-Nicol Township boundary, and northeast of Wilson Lake in central Nicol Township. Felsic metavolcanics underlie a "horseshoe"-shaped area in northwest Nicol Township. Sulphide facies iron formation is associated with this unit. Granitic rocks are also exposed in central Nicol Township, north of Wilson Lake. North-trending Matachewan-type diabase dikes are ubiquitous throughout the metavolcanic and granitic rocks. Nonconformably overlying the Early Precambrian basement rocks are relatively flat-lying Middle Precambrian clastic sedimentary rocks of the Cobalt Group, which is part of the Huronian Supergroup (Robertson et al. 1969).

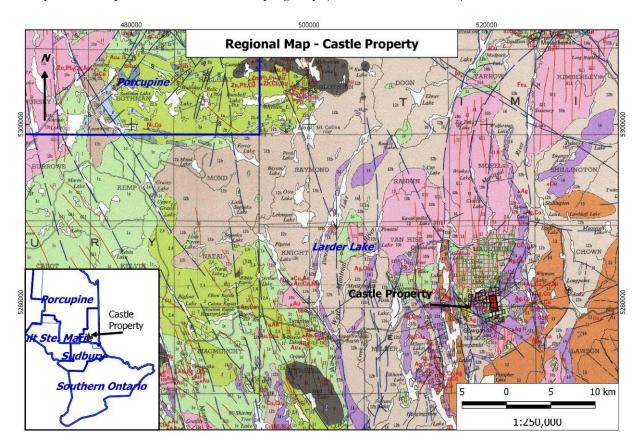


Figure 10: Geology of the Property

- Early Precambrian – Ultramafic, Mafic and Intermediate Metavolcanics

This unit of Early Precambrian rocks has been mapped as the oldest in the area and is composed mainly of fine-grained flows of basaltic composition with local coarse-grained facies and pyroclastics. The rocks have been metamorphosed mainly under greenschist facies, but amphibolite facies conditions prevail locally. A narrow belt of layered amphibolite separates quartz diorite from albite trondhjemite in central Haultain Township. The foliation in the rocks, however, suggests that all of the larger areas at least, and some, if not all, of the smaller areas were at one time part of the same belt. The foliation also suggests that a large fold possibly displaced, in part, by faulting, is present within the metavolcanics. On the basis of colour index, the metavolcanics are believed to be mainly basaltic in composition. They are massive to weakly foliated, fine grained, dark greenish grey to almost black and locally have a mottled appearance.

Massive amphibolites are associated with the metavolcanics and foliated amphibolite forms a narrow belt in north-central Haultain Township. Pyroclastic units, lavas with poorly preserved pillows, and amygdaloidal lavas occur locally in the metavolcanics. Narrow sedimentary units, composed mainly of quartzite, also occur.

- Middle Precambrian – Huronian Supergroup, Cobalt Group

Following the igneous activity of the Early Precambrian a period of uplift, basin formation and erosion occurred, resulting in the deposition of rocks of the Huronian Supergroup (Robertson et al. 1969); of this Supergroup, only rocks of the Cobalt Group are present. The Cobalt Group in the Gowganda area is subdivided as follows:

Gowganda Formation which is made up mainly of:

- Coleman Member: conglomerate, siltstone, feldspathic sandstones and greywackes;
- Firstbrook Member: laminated argillite;

Lorrain Formation made up of pale green to white to pale pink feldspathic sandstones.

Gowganda Formation - Coleman Member

The Coleman Member of the Gowganda Formation is present in the western half of Nicol Township where it is repeated, owing to faulting and, in part, rests non-conformably on Early Precambrian rocks. Exposures also occur within the Miller Lake basin and along the margins of the north-trending "tail" of the diabase basin. The thickness of the Coleman Member is difficult to determine because of faulting, disruption from diabase intrusions and incomplete sections. The Coleman Member of the Gowganda Formation is lithologically heterogeneous and is composed of numerous clastic rock types, including feldspathic greywacke, arkose, feldspathic sandstone, ferruginous sandstones, argillite and siltstone, conglomerate, and breccia.

Gowganda Formation – Firstbrook Member

The Firstbrook Member is very limited in areal extent. The sequence in Nicol Township is estimated to be about 25 m (80 feet) thick and there is a similar thickness exposed in Milner Township.

The Firstbrook is a unit of laminated argillite with alternating graded laminae which are various shades of dark red, green and grey. This member conformably overlies the Coleman Member and is gradational into the overlying Lorrain Formation. The laminae are generally regular and undisturbed and range from about 0.5 to 4 mm and average about 1 mm. The laminae are graded with the quartz being more coarse-grained in the green and finer grained in the red. The grains are also more closely packed in the red laminae. A higher concentration of hematite in the red laminae gives them their colour. The magnetite in these laminae is finer grained. The concentration of hematite in the red laminae is variable and is locally gradational into green laminae.

Lorrain Formation

Lorrain Formation rocks underlie most of southeastern Nicol Township and are preserved in down-faulted blocks along the Gowganda Lake-Obushkong Lake zones. With an assumed mean dip of 10 degrees there is an estimated 900 m (3,000 feet) thickness in the southeastern part of Nicol Township.

The Lorrain Formation is composed of a variety of fine-grained quartzose sandstones which are generally arkosic at the base, becoming less feldspathic towards the top and grading to orthoguartzite. Feldspathic sandstone is the most common in this area.

Massive Intrusive Rocks - Nipissing Diabase

From an economic point of view the gabbroic rocks of the Nipissing Diabase (Miller, 1910) sheets are the most important in the area. Very early in the history of the Timiskaming silver area, it was recognized that these rocks held a close spatial relationship with the rich silver deposits and the prospecting for diabase became intensive. For many years, many geologists considered the areas of Nipissing Diabase to be remnants of a former continuous sheet which extended across the region (Burrows 1926; Campbell 1930). More recently, however, geologists have suggested that the Nipissing Diabase is actually made up of numerous gabbroic intrusions (Moore 1955; Hester 1967; McIlwaine 1971; Card et al. 1970).

Most of the diabase bodies in the area have a strong northerly orientation indicating that the dominant north-trending fault activity which controlled intrusion of Matachewan dikes and, in part, influenced Gowganda Formation deposition, was still active during intrusion of the Nipissing Diabase. Limited evidence, however, suggests an easterly dip which is probably steep. The evidence includes the occurrence of aplite dikes along the eastern contact; aplite dikes, where they occur, are generally at or near the top of a diabase body.

7.2 Property Geology

The compagny's drilling campaigns between 2011 and 2020 allowed identification and differentiation of lithologies. A preliminary list of lithologies with descriptions is tabulated below (D. Robinson, 2015).

Intrusive rocks

Abitibi Diabase

Abitibi diabase intrusives are steeply dipping, east-northeast trending dikes that post-date the silver-cobalt vein mineralization

Nipissing Diabase

Granophyric Diabase: Granophyric diabase is distinguished by having generally more than 35% granophyric minerals and textures. This granophyric mineralogy is commonly pink but can be gray to white. The granophyric diabase phase appears to be a water-rich intrusive phase and appears to be the product of advanced differentiation of the intrusive.

Coarse Grained Diabase: Diabase is classified as coarse-grained if the groundmass minerals are larger than 4 mm. Minor to significant granophyric mineralogy occurs interstitial to clinopyroxene and plagioclase. Except in varied textured diabase, 2-4 mm groundmass textures are minor.

Varied-textured Diabase: Varied-textured diabase consists of a prominent mixture of fine-grained and coarse-grained phases with distinct, random boundaries. These consist of patches and bands of fine-grained, dark green, one-pyroxene diabase and coarse-grained diabase. 2-4 cm groundmass textures are common. The coarse-grained phases appear more felsic and generally have lower specific gravity relative to the heavier, fine-grained phases which appear to be more mafic.

Fine Grained Diabase: Diabase is classified as fine-grained if the groundmass minerals are 2 mm or smaller. This sub-unit includes both: one- or two-pyroxene diabases. This sub-unit is important because the distinction between Mg-rich orthopyroxene (hypersthene) and Ferich clinopyroxene is commonly difficult.

Two Pyroxene Diabase: The fine-grained diabase is classified as two-pyroxene diabase if orthopyroxene (hypersthene) is identified. The orthopyroxene tends to be the coarsest mineral and is commonly a pale amber color, in contrast to the dark green clinopyroxene.

The distinction between Mg-rich orthopyroxene (hypersthene) and Fe-rich clinopyroxene is commonly difficult. When the orthopyroxene is easily identified, the grain edges are typically obscured by grinding relics from drilling, indistinct grain boundaries in broken core, translucent grain edges and partial alteration of the pyroxenes. These problems commonly make the description of grain size and percentage of the two pyroxenes difficult. For this reason, the description of grain size and percentage of the orthopyroxene in drill logs are tentative and support the findings of specific gravity and possibly whole rock geochemistry and petrographic work.

One-pyroxene Diabase: Fine-grained diabase with clean pyroxene is classified as one-pyroxene diabase if no hypersthene is identified.

Transitional Diabase: Transitional phase is gradational, grading from very fine-grained to 1 mm crystalline diabase that tends to be less than 20 m thick towards the upper and lower contacts. The pyroxene can tend to be somewhat acicular compared to the more equant pyroxene of the fine-grained phase. The transitional phase at the upper and lower contacts appears to be similar.

Chilled Diabase: Diabase appearing at the upper and lower contacts tends to be aphanitic to nearly aphanitic grading to very fine-grained over a few tens of cm. The upper and lower chill margins of the diabase have a similar appearance. The absence of phenocrysts to less than 2% extremely fine, dark green pyroxene phenocrysts indicate the diabase was a hot intrusive. The apparent lack of alteration of the host rock indicates the diabase was intruded

as a dry intrusive. This is in contrast to the granophyric diabase phase which appears to be a water-rich intrusive phase.

Huronian Sediments (Proterozoic)

Argillites: Extremely fine-grained sediments in which the mineral grains are not apparent. This sub-unit includes massive, thin-bedded and thick-bedded sediments. These tend to be moderately soft.

Siltstones: Very fine-grained sediments in which the mineral grains can be perceived with hand lens. Siltstones include massive, thin-bedded and thick-bedded sediments. These tend to be hard.

Sandstones: Sediments in which the mineral grains are apparent without hand lens. Includes massive, thin-bedded and thick-bedded sediments. These tend to be hard.

Diamictite: Sediments consisting of a chaotic mixture of argillite to sand-sized grains, commonly with a few grit-, pebble- to boulder-sized clasts. These can be massive to bedded. These commonly grade into argillite, siltstones and sandstone. If the unit has apparent weak to moderate sorting the unit is logged as argillite, siltstone and sandstone according to the dominant grain size. These range from soft to hard.

Conglomerate - Clast-supported conglomerates tend to be thin sub-units with sharp to gradational contacts (over a few decimetres). The groundmass between clasts tends to be sandy. Clasts tend to be well-rounded with granitic clasts dominant. Low in the stratigraphic section, the proportion of Archean rocks tends to increase. Within a few tens of metres of the Archean unconformity, clasts are commonly identifiable. High in the stratigraphic section, Proterozoic clasts are common, ranging from angular breccia to rounded clasts.

Conglomerate - General: This sub-unit generally has more than 10% boulder-sized clasts. Historically, sediments with prominent pebble to boulder size clasts are classified as conglomerate; even when the boulder-sized clasts are less than 1% of the rocks. When clasts are less than a few percent of a sub-unit, the clasts appear to be exotic dropstones and should not be used to classify the sediment as conglomerate.

Matachewan Intrusives

Matachewan diabase: Matachewan diabase intrusives are near vertical, north-trending dikes. Locally, up to 5% distinctive 1-4 cm, pale gray to pale green feldspar phenocrysts and aggregates are present. If the distinctive feldspar porphyry textures are absent, other field relationships, including magnetic signature are required to distinguish between Matachewan and Nipissing diabase.

Archean Lithologies

Undifferentiated Archean Dikes:

July 2020

50

Felsic Intrusives: North of the property a trondhjemite is the dominant rock type.

Quartz Feldspar Porphyry: Feldspar porphyry is logged as quartz-feldspar porphyry if quartz grains were identified. Quartz-feldspar porphyry tends to be up to 30% pale grey phenocrysts up to 3 mm with a few apparent quartz phenocrysts in a very hard grey groundmass.

Feldspar Porphyry: Feldspar porphyry, mafic porphyry and quartz-feldspar porphyry appear to form a prominent suite of dikes dominated by feldspar porphyry, common hornblende porphyry and a few quartz-feldspar porphyry dikes. These appear to be similar to the dike systems associated with gold occurrences in the Gowganda – Shining Tree area. Feldspar porphyry tends to be up to 30% pale grey phenocrysts up to 3 mm in a very hard grey groundmass.

Mafic Porphyry: Mafic porphyry tends to exhibit as dikes with a dark greenish-red groundmass with or without phenocrysts. It is very hard.

Undifferentiated Archean rocks:

Sediments-Tuffs: The sediments tend to be well-bedded and deformed, commonly with a strong deformation fabric. The sediments include a wide range of sediment types including Magnetite Iron Formation and feldspar crystal tuffs. In strongly deformed rocks, the distinction between feldspar crystal tuff and feldspar porphyry dike can be difficult. The distinction between sediments and mafic and ultramafic rock is also difficult in these deformed rocks. Additional work could reclassify some of the deformed rocks.

Iron Formation: Magnetite Iron Formation with minor to significant magnetite content is common. Some banded, dark green, strongly magnetic rock logged as Iron Formation, appears to be sheared, mafic-ultramafic rock. Specific gravity measurements, hardness and whole rock geochemistry may be useful in the classification of these questionable units. Heavy, strongly magnetic units may tend to be mafic-ultramafic rocks.

Mafic and Ultramafic Volcanics and Intrusives: Mafic and ultramafic volcanics and intrusives appear to be a suite of related rocks. The thicker units appear to be differentiated in place or at the magmatic source. Many differentiation textures and trends were identified. Sulphides were a significant component of some of these units. The logs differentiate these as mafic and ultramafic intrusives and flows. A combination of logging, specific gravity measurements and litho-geochemistry are required to confirm the tentative log identifications of these units, particularly in the strongly deformed units.

Deformation Zones: Deformation zones, consisting of moderately to strongly foliated rock are tentatively identified as similar to deformation zones in the gold camps of Northeastern Ontario and were noted in the rock descriptions of the logs.

July 2020

Mineralization

Historic silver production in the Miller Lake Basin known as the Gowganda Silver Camp was from the Castle #2 (Everett) Mine, the Castle #3 Mine, the Capitol Mine (includes Castle #1 production) and Miller Lake O'Brien mine (Figure 12). This production was almost exclusively from the Nipissing diabase. The majority of the ore was from the upper half of the Nipissing diabase cone intrusives (Figure 11). The other camps including Cobalt, South Lorain, North Cobalt, and Casey Township had major silver production from below, and from above and throughout the Nipissing diabase cone intrusives.

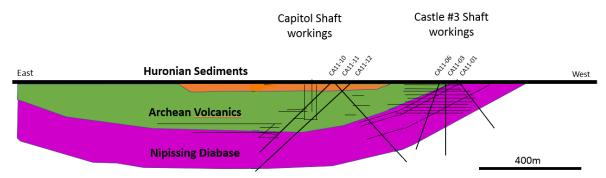


Figure 11: Schematic geological cross section lookin SW (Modified from Robinson, 2015)

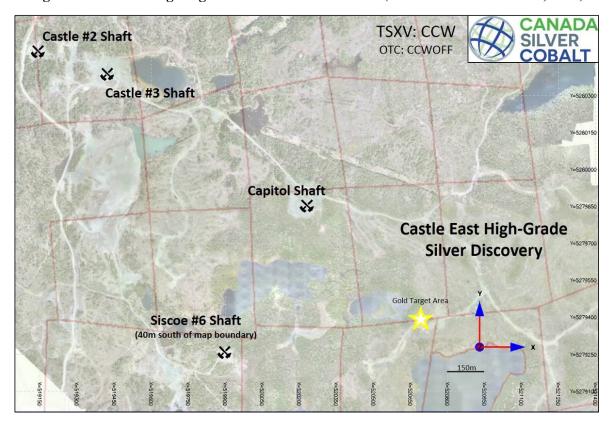


Figure 12: The location of the Capitol shaft and the Robinson zone

July 2020

The past-producing Castle, Capitol and O'Brien Mines, all within a 2-km radius of the Robinson Zone, are interpreted to comprise a large silver-rich system of abundant vein networks that follow the dip of the diabase toward Castle East in the heart of the Miller Lake Basin (Figure 11 and Figure 12).

The silver-cobalt arsenide mineral assemblage, which occurs in veins prevailingly at and near the contacts between the Nipissing diabase and either the sedimentary rocks of the Cobalt Group or the Archean rocks.

At the western side of the Castle Mine, cobalt grades were intersected on the first level previously only exploited for its native silver. An underground drilling program (2018/2019, using AQ diameter drill core) was completed to test the continuity of the mineralized veins. Figure 13, shows underground drill cores with massive silver-cobalt mineralization within the Nipissing diabase. The Nipissing diabase, the primary host of very high-grade silver mineralization in the Gowganda Camp, is now known to thicken in a higher-temperature system at Castle East. The sub-horizontal and sub-vertical fault structures, which extend throughout the Gowganda Camp, are key controls on mineralization.

Figure 13: Underground drill core showing silver-cobalt-nickel mineralisation (white arrows)

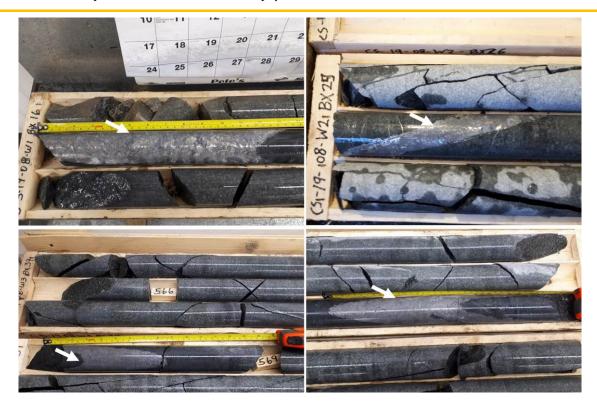


Figure 14: Massive silver-cobalt mineralisation (white arrows) intersected by the drill holes (wedges program 2019/2020)

Distribution of the silver-cobalt veins in the Cobalt district appears to be controlled by the contact between the Nipissing diabase sheets and the rocks of either the Cobalt Group (Gowganda Formation) or Archean lithologies. The veins occur in the diabase and in either the sedimentary rocks or Archean volcanics within about 200 m of their contact with the diabase. They dip steeply, extend horizontally as much as 1,000 m and vertically as much as 120 m. A typical deposit consists of a few short anastomosing veins of variable thickness from a few centimetres to two or three decimetres. The metallic minerals occur in irregular lenses of high-grade ore surrounded by aureoles of lower-grade material. Arsenides, sulpharsenides and antimonides of nickel, cobalt, and iron in various proportions, as well as large amounts of native silver, are the principal metallic constituents of the ore. Carbonates (dolomite, calcite), quartz, and chlorite are typical gangue minerals.

Figure 15: Drill core with veins mostly filled by quartz cements within the Nipissing diabase

Alteration haloes are developed in the wall rocks along the veins as narrow (less than 10 cm) zones of calcite, chlorite, epidote, K-feldspar, muscovite and anatase. Chlorite occurs locally in spots, 1 to 5 mm in diameter.

8 Deposit Types (Item 8)

The deposit model and history of the Gowganda Camp, and the broader Northern Ontario Silver-Cobalt District, which officially produced nearly half a billion ounces of silver last century, show that unusually rich, narrow-vein shoots (generally half an inch to six inches in true width and, in rare cases, up to approximately 12 inches in true width) can extend for tens or even hundreds of meters (pinching and swelling, moving in and out of very high-grade mineralization). These veins contain Ag-Co-Ni-As assemblage and may be surrounded by strongly mineralized wall rock and they're often within a network of closely spaced parallel veins and veinlets in addition to silver-filled fractures. Additionally, a native silver assemblage commonly occurs in the wall rock as specks, and fracture fillings (commonly called leaf and plate silver).

A base metal vein assemblage, including chalcopyrite, sphalerite and galena, may occur peripheral to the arsenide assemblage or within veins lacking the arsenide assemblage. A late-stage sulphide and sulphosalt assemblage, which is in part distributed along the margins of Ag-Co-Ni arsenide veins, may occur where these veins appear to have been reopened. Minor amounts of silver may be present as argentite and ruby-silver or, occasionally, as a black mud near the surface. Carbonates (mainly calcite, \pm dolomite), quartz, and chlorite are typical gangue minerals.

The economically productive deposits were dominantly within the north and the northeastern peripheries of the Nipissing diabase sills of the Cobalt Embayment, near the Archean-Huronian unconformity. Silver was found above and close to the diabase. More specifically, in Gowganda, the silver veins are in the upper half of the Nipissing diabase and, in South Lorrain, the silver veins were generally in the Archean rocks above the diabase (McIlwaine, 1978). In the Miller Lake Basin, most of the silver has been located in the west and north-west side of the basin.

The host rocks include Precambrian metasedimentary and metavolcanic rocks, which are, as a rule, intruded by dykes and sills of diabase. The metallic minerals occur in veins and sheeted veins (or vein sets) commonly with or as fracture-fillings in stockworks and/or as impregnations in the wall rocks. These minerals are usually associated with carbonate and/or quartz gangue. The wall rocks adjacent to the veins are commonly hydrothermally altered.

Silver, with associated nickel-cobalt-iron arsenides, has been the only productive type of mineralization in the area. Most of the known occurrences in North-Eastern Ontario are hosted by either Nipissing Diabase or by Gowganda Formation and Early Precambrian meta-volcanics in close association with the Nipissing Diabase.

The latest results of trenching, the 2018 drilling program and the 2019 underground drilling program highlighted gold mineralization at the western and the eastern zone.

Drill holes CS-18-15, CS-18-16 and CS-18-16-W (wedge hole) east of the mine are a very important breakthrough and now have us seriously investigating an apparent gold system with appropriate sulphide and quartz veining in association with a major fault that may be the controlling fault for the zones we've encountered. This discovery needs more exploration work for a good understanding of the deposit model.

9 Exploration (Item 9)

9.1 Historical exploration work

Work conducted from 2010 to 2018 under the supervision of Douglas Robinson P. Eng., included diamond drilling, geotechnical survey lines, soil geochemistry metal mobile ions (MMI), field mapping with float tracing, stripping trenches and sampling.

9.1.1 Surface drilling program

Canada Silver Cobalt Works started a surface drilling program in 2011 under the supervision of D. Robinson. During this campaign, twelve (12) diamond holes were collared, totaling 6974.73 m of diamond drill core (Table 9). Table 9, shows the detailed information of the 2011 diamond drilling program.

The 2011 drilling program, tested several zones (western and Robinson zone; Figure 16). Table 10, shows the highlights with a maximum Ag value intersected in hole CA1108 of 40,944 g/t Ag over 0.45m (Figure 17) and a high Au value intersected in hole CA1107 of 1.72 g/t Au.

July 2020

Table 9: Diamond drill holes data program 2011 data (UTM coordinates; NAD 83, zone 17)

Hole Name	Easting	Northing	Elevation	Azimuth	Dip	Length (m)
CA1101	519512	5280566	398	347	-45	569.41
CA1102	519483	5280545	387	227	-45	25.38
CA1103	519736	5280677	414	175	-58	625.94
CA1104	519745	5280681	418	356	-45	442.46
CA1105	519951	5280772	396	310	-45	240.26
CA1106	519951	5280772	396	310	-57	254.50
CA1107	520903	5280331	427	180	-50	906.28
CA1108	520914	5279950	415	134	-50	596.41
CA1109	520913	5279953	415	308	-49	645.00
CA1110	520307	5280046	398	122	-46	803.22
CA1111	520308	5280038	398	302	-45	842.79
CA1112	520190	5280125	401	122	-43	1023.08

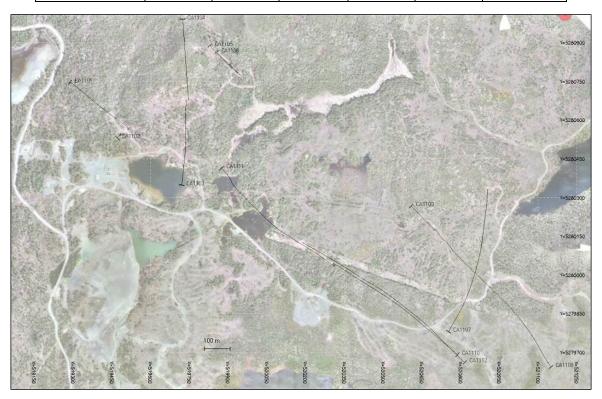


Figure 16: Location of 2011 drill hole collars

			Sample				
Hole Name	From	То	Number	Length (m)	Au (g/t)	Ag (g/t)	Co (ppm)
CA1107	138.11	139.27	44601	1.16	1.727	1.53	
CA1107	165.8	166.73	44622	0.93	0.802	3.29	
CA1108	146.4	147.12	44952	0.72	0.013	0.5	7690
CA1108	563.54	564.34	45182	0.8	0.0025	1069	
CA1108	564.34	564.79	45183	0.45	0.0025	40944	9107
CA1108	564.79	565.68	45184	0.89	0.008	515	
CA1108	565.68	566.28	45185	0.6	0.008	311	
CA1108	566.28	566.63	45186	0.35	0.006	248	
CA1109	343.47	343.59	45290	0.12	0.56	19.32	14455
CA1110	378.84	379.08	45524	0.24	0.485	23.03	6612
CA1110	379.08	379.7	45526	0.62	0.096	7.25	10904
CA1110	401.82	402.61	45546	0.79	0.005	101.27	

Table 10: Highlights from the 2011 drilling program

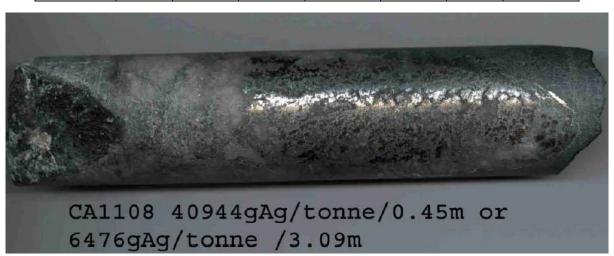


Figure 17: Massive silver mineralisation intersected at drill hole CA1108

9.1.2 Geochemistry Mobile Metal Ions (MMI)

The soil sampling for the geochemistry MMI program took place in 2014. This work was an orientation survey to establish typical soil profiles and the signature of Mobile Metal Ions (MMI) concentrations expected on the property. This was to aid in the determination the potential viability of MMI soil sampling to silver and gold exploration.

Samples were collected on lines at 12.5 metre intervals (Figure 18 and Table 11) and at 6.25 m in specific sectors. A total of 345 samples were taken during this program.

Figure 18, shows sampling method used during the MMI program with typical Auger sample, typical hole in the ground and samples in the plastic bags shipped to the laboratory.

Figure 18: MMI sampling pictures
Table 11: Example of sampling program log

						O = Oxidized sample		
						R = Reduced sample		
Sample Number	Line	Interval	Organics	Sample Interval cm	Soil Type	Sample Description	Sample Number	
		П			1 1	Samples E5278262- 291 taken October 22, 2014		
E5278262	Grid C Line 585W	0	s 4	14-29	Sandy silt & Boulders	O 0-4 cm black organics and litter, 4-10 cm grey, 10- 29 medium brown. Flat, balsam fir	E5278262	22-oct-14
E5278263	Grid C Line 585W	12,5	s 3	13-28	Sandy silt & Boulders	O 0-3 black organics, 3-8 pale grey, 8-27 Brown. From among boulders. Flat. Maple balsam fir.	E5278263	22-oct-14
E5278264	Grid C Line 585W	25	s 2	13-28	Sandy silt & Boulders	O 0-2 black organics, 2-27 Red. From among boulders. Flat Maple, balsam fir.	E5278264	22-oct-14
E5278265	Grid C Line 585W	37,5	s 5	15-30		R 0-5 black organics, 5-12 grey, 12-30 yellow-brown. From among boulders. Wet. Flat. Maple, balsam fir.	E5278265	22-oct-14
E5278266	Grid C Line 585W	50	s 10	20-35	Sandy silt & Boulders	O 0-10 black organics, 10-35 medium brown. Water in hole. Sample among boulders. Maple, balsam fir. Flat.	E5278266	22-oct-14
E5278267	Grid C Line 585W	62,5	s 5	25-30	Sandy silt & Boulders	O 0-5 black organics, 5-10 dominantly brown and yellow. 10-25 mixed grey to grey-brown, 25-30 medium brown. Near mine muck on edge of road. Balsam fir, poplar. 6m N of centre of road. Flat	E5278267	22-oct-14
E5278268	Grid C Line 585W	75	s 15	25-40	Sandy silt & Boulders	O 0-15 black organics, 15-40 medium brown. Br, poplar. Slope NE.	E5278268	22-oct-14
E5278269	Grid C Line 585W	87,5	s 5	15-30	Sandy silt & Boulders	O 0-5 black organics, 5-30 medium brown. Flat.	E5278269	22-oct-14
E5278270	Grid C Line 585W	100	s 2	12-27	Sandy silt & Boulders	0-2 black organics, 2-4 grey-brown, 4-27 medium brown. Clear cut balsam fir, maple, poplar. Slope S.	E5278270	22-oct-14
E5278271	Grid C Line 585W	112,5	s 2	12-27		O 0-2 black organics, 2-4 grey, 4-27 medium brown. Clear cut balsam fir, poplar, maple. Slope S.	E5278271	22-oct-14

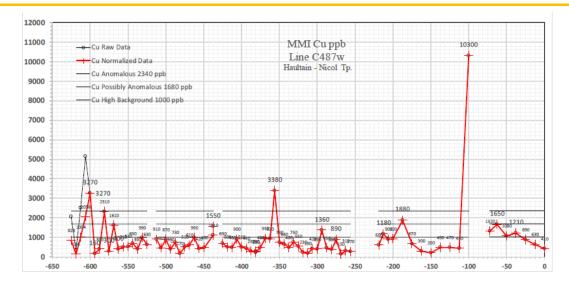


Figure 19: Example of Line C487w - Graph of Copper

The program has highlighted Ag, Au and base metals anomalies which deserves additional work. The following figure presents the compilation which highlights some potential targets (Figure 20).

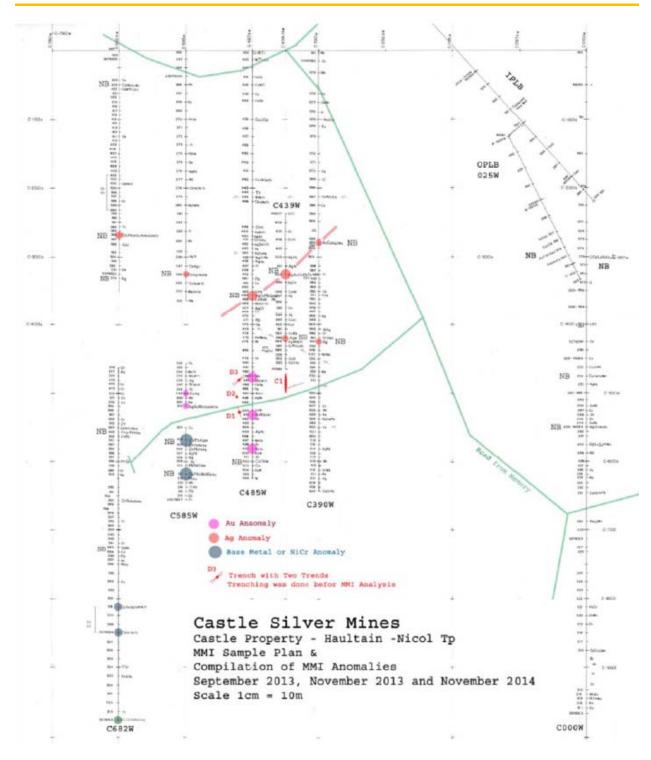


Figure 20: Compilation map MMI

9.1.3 Surface sampling and trenches

A total of four (4) trenches were done in December 2014 (Figure 21). The figure below present the working conditions and the rock-saw channel sampling.

Figure 21: 2014 winter trenching program

Significant results were obtained in the trenches. The structures on surface may not represent the silver and cobalt mineralization at depth but clearly shows that the property has potential for gold. The Table 12, show the highlights from the trench samples.

Table 12: Highlights from the trench samples realised in 2014

Hole				
Name	From (m)	To (m)	Length (m)	Au (g/t)
L42138	0.00	1.27	1.27	3.77
L42049	0.00	0.81	0.81	1.25
L42133	0.00	0.78	0.78	1.16
L42050	0.00	1.02	1.02	0.86
L42047	0.00	1.08	1.08	0.71
L42143	0.00	0.59	0.59	0.62
L42132	0.00	0.99	0.99	0.38
L42048	0.00	1.08	1.08	0.35
L42134	0.00	0.46	0.46	0.27

July 2020

62

Figure 22: 2014 trench locations

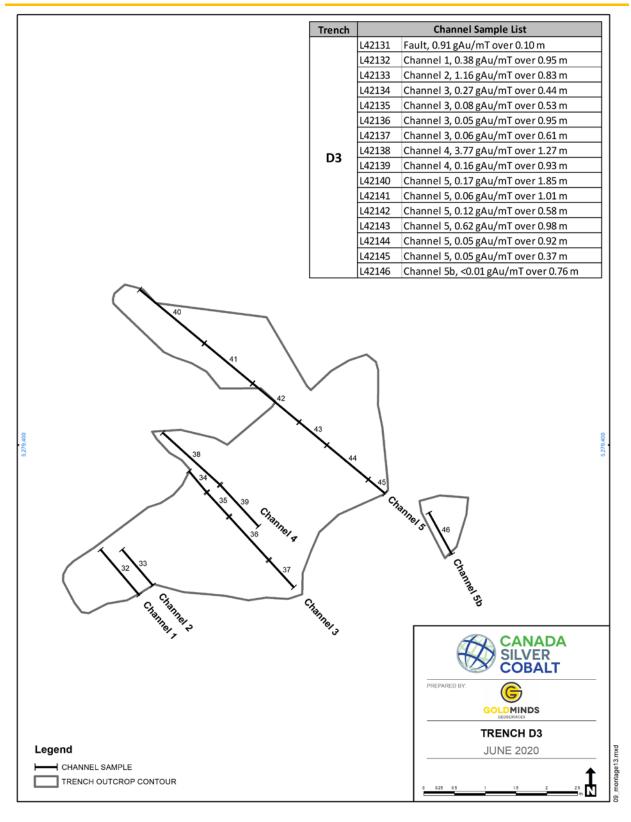


Figure 23: Plan view of trench D3, with Au assay results

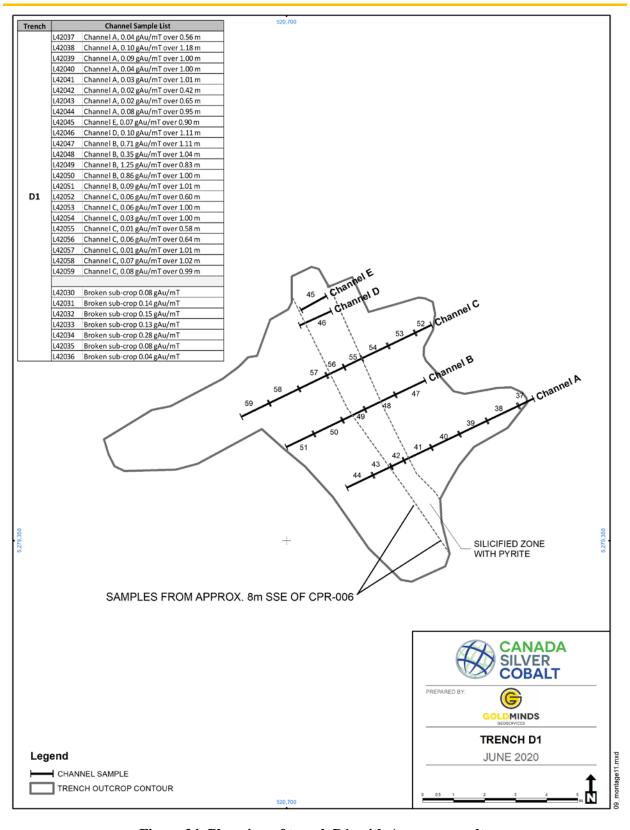


Figure 24: Plan view of trench D1, with Au assay results

Figure 25: Plan view of trench D2, with Au assay results

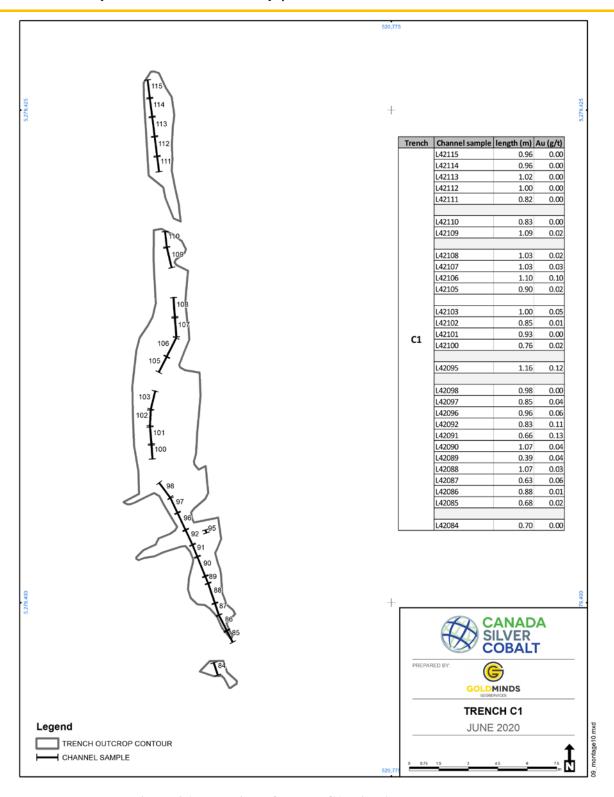


Figure 26: Plan view of trench C1, with Au assay results

Significant results were obtained from the trench samples (Figure 22, Figure 23, Figure 24, Figure 25 and Figure 26).

The structures on surface may not represent the silver and cobalt mineralization at depth but clearly shows that the property has potential for gold. These structures may continue at depth and may host Co-Ag at depth within the diabase below the Archean and needs to be tested. We know that some structures in the Cobalt Camp had base metals and sometimes gold in Archean structures yet when those same structures extended into (or nearer) the Nipissing diabase, mineralization could include the cobalt-silver-arsenide assemblage.

9.2 Exploration by Canada Silver Cobalt Works

9.2.1 Geophysics

The survey was performed by ZEN Geomap Inc. on mining leases LEA-19673, 19679, 19680, 19701, 19709, 19702 and 19703 in order to generate total field and 1st vertical derivative maps across the survey area. These maps help to visualize the structure and general nature of bedrock lying beneath overburden. Data processing and maps were completed between Aug 4th and Sept 28th, 2018. Report was prepared between February 1st and February 15th, 2019.

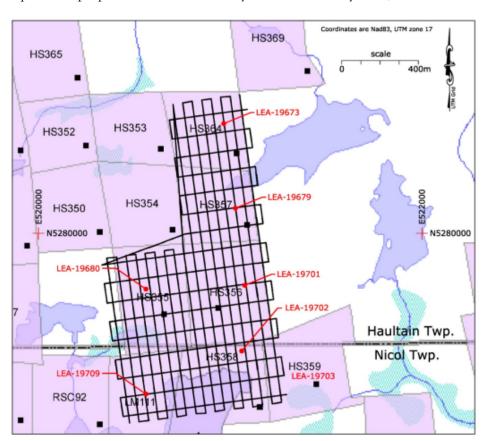


Figure 27: Location of mining leases and drone's path (Zen Geomap inc., Report - Drone Magnetometer survey)

The program consisted of a drone magnetic survey carried out on a grid with N-S lines spaced at 50m and E-W lines spaced at 100 m (Figure 27). The path is 31.3 linear kilometers and the drone flew at an altitude of 60 m height above ground level. A Geometrics MFAM magnetometer mounted on a DJI M600 Pro hexacopter drone was used to survey all grid lines. A Geometrics G856AX proton procession magnetometer was operated as a base station throughout the survey to provide diurnal correction.

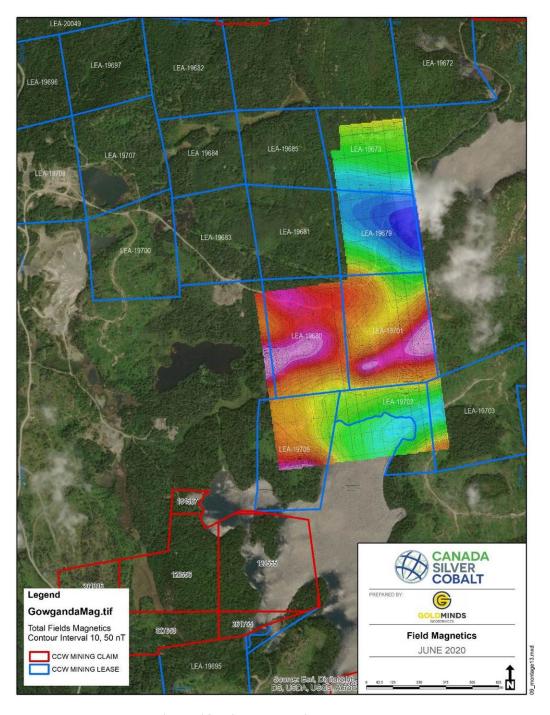


Figure 28: Field magnetics survey map

The magnetic survey shows values ranging between 55250 and 56500nT. Contours are included on the Total Field map. The magnetic field values were processed to make a 1VD map that quantifies the change in signal as a function of survey height. This method is used to enhance the short wavelength signal. The 1VD map shows steeply-dipping magnetic features at approximately Northing 5279600 (Figure 28).

9.2.2 Surface mapping and trenches 2019

During the fall of 2019, five grab sample from the Castle East Property were sent to the Swastika laboratory for a geochemical analysis. The following map (Figure 29) shows the location of the samples. Table 13, describes the samples and Table 14, shows the assay results.

Table 13: Grab sample's description

Assay Sample	Type	Description	X	Y	Elevation (m)	Recommendation
22251	Outcrop	Composite sample over 0.5 x 3m taken on deformed and boudined QV + wallrock , decimeter size	520815.7	5279415.0	407.8	
22252	Outcrop	Composite sample taken on half metre width feldspathic dike with quartz veinlets with pyrite	520813.9	5279415.0	407.8	
22253	Outcrop	Grab sample of syenite dike with fine disseminated pyrite accompanied with reddish hematized aplitic veins stockwork and chlorite-pyrite veins all cross cut altered gabbroic rock	520660.7	5279563.0	413.3	Return to stripping the mineralized zone, mapping and sampling
22254	Outcrop	Grab sample of syenite with pyrite veinlets stockwork.	520686.1	5279534.9	411.8	
22255	Composite	Composite samples taken on several quartz veins within syenite dike	520687.0	5279400.0	404.0	Return to stripping the mineralized zone, mapping and sampling

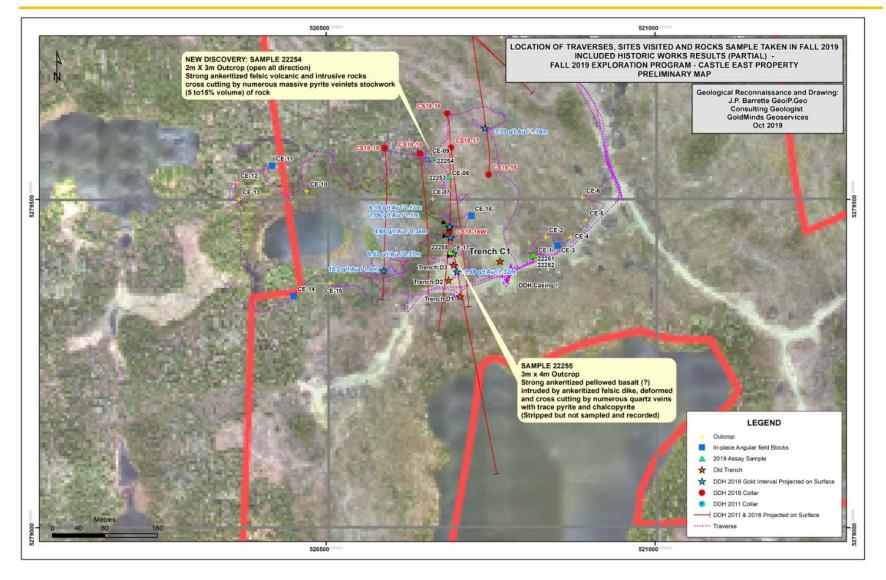


Figure 29: Map showing location of the grab samples

Samples	Au ppm	Pt ppm	Pd ppm	Ag ppm	Со ррт	Cu ppm	Ni ppm
22251	<0.001	<0.005	<0.001	<0.2	10	2	30
22252	0.111	<0.005	<0.001	<0.2	4	15	5
22253	0.02	< 0.005	<0.001	<0.2	14	6	29
22254	1.975	<0.005	0.005	1.2	59	212	57
22255	0.019	<0.005	<0.001	<0.2	9	19	16

Table 14: Assay results of the grab samples

The grab sample 22254 shows interesting results for gold (1.97 Au g/t; Table 14). This sample is composed mainly of a syenite and intrusive rocks crosscut by numerous massive pyrite veinlets.

9.2.3 Borehole camera inspection

The borehole camera inspection consisted of visual inspection of the drillholes CA-11-08 and CS-20-22 for the geometric characterisation of the mineralized vein that would be visible around the interval 563.34 m for hole CA1108 (according to the previous report of the drilling campaign of 2011) and around 410 m for hole CS-20-22.

The inspection for hole CA1108 was performed on November 15, 2019. The down-hole camera inspection was successful as the target was reached and the technical team was able to view, identify and film the vein (Figure 33 and Figure 34). This inspection allowed us to program four drill holes wedges described below late in Item 10 (drilling program 2019/2020).

For hole CS-20-22, the down-hole camera inspection was performed on May 27, 2020 and was successful as the target was reached and the technical team was able to view, identify and film the two (2) veins (Figure 37, Figure 38, Figure 39 and Figure 40).

- Camera inspection of hole CA1108

Following the examination of previous report, hole CA-11-08 drilled during the 2011 drilling campaign executed by Doug Robinson has shown high grade of silver from intersection 563.34 m up to 564.34 m. A mineralized quartz vein has been described in the logs provided in the report. The data regarding the angle of the vein and orientation in relation to the core have been collected with a low angle of 12 to 18 degrees. However, the core was not oriented. In order to plan new drill holes to characterize the mineralization on the property, that information was needed.

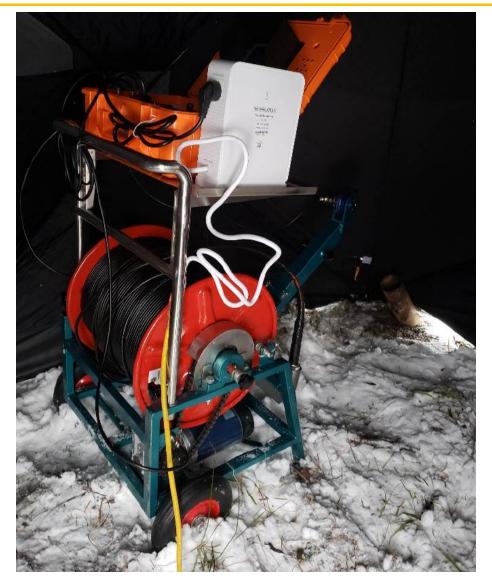


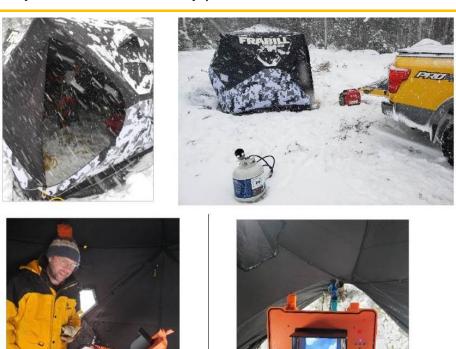
Figure 30: 600 m borehole inspection camera, Zhengzhou Defy Robot

The methodology was planned by Claude Duplessis, Eng. from GMG. Inspection was performed by technical team Maude Marquis (who had used similar devise in a 30 m water well borehole) and Pierre-Garant Gagnon, under the supervision of M. Rachidi, all GMG's employees. The procedure consisted of the following steps:

- 1- Snow removal from the area surrounding the borehole and set up of the tent in order to protect electronic equipment from bad weather conditions.
- 2- Deployment of the borehole inspection camera, as shown on Figure 30, and equipment allowing its proper functioning (gas generator and transformer).
- 3- Switch on the camera and descent of the device in the hole until the front of the camera touches the water surface at the piezometric level line (at 4.08 m down the hole). Reset the

July 2020

73



depth counter to zero on the control unit so Zero is 4.08 m from casing collar, Casing length is 2.79 m.

- 4- At a maximum speed of 1000 m per hour, descent of the device at a depth of 550 m. Note that the camera has been blocked two (2) times by debris encountered in the drillhole. Around the interval 198 m and 450 m. Several ascents and descents were needed in order to unblock the device.
- 5- Around 550 m in depth, speed has been slowed down in order to have a better focus of the camera of the rock and view on the targeted vein.
- 6- The major Vein was identified at 578.398 m to 579.43m (Camera reel distance). Two (2) lateral views and two (2) frontal views were recorded on the unit: one as the camera goes down the hole, and the other one has it goes up, in each view.
- 7- Continuation of the descent until debris filling the bottom of the hole are visible on the screen of the unit. According to the depth counter, the end of the drillhole was measured at 606.477 m, which was anticipated at 596.26 m based on the log provided in a previous report.
- 8- Ascent of the camera until the front of the device touches the water surface at the piezometric level line. Reset the depth counter to zero on the control unit in order to measure the depth of the submerged portion of the drillhole and add it to the first depths measured for the vein's location and bottom's location.
- 9- Repacking of all the equipment and site clean-up of any waste.
- 10- At the office, analysis of the videos and formulation of a justified interpretation of the angle and orientation of the mineralized vein intersected.

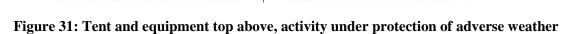


Figure 32: Vein contact with weight at 2 O'clock and contact at 11 O'oclock

Figure 33: Silver Mineralization in the vein lateral camera view at 579.46m

Figure 34: Mineralization in the vein lateral camera view at 579.34m

The interpretation is based on the observation of the vein contact on the top right of the hole (Figure 32). The drill hole log indicates the vein is about 12-18 degrees to core axis. With the hole dipping at -47 and with the information we have (assuming fixed azimuth), the orientation of the main vein containing native silver has approximate direction of 110 degrees North dipping approximately -65 degrees South (Figure 35).

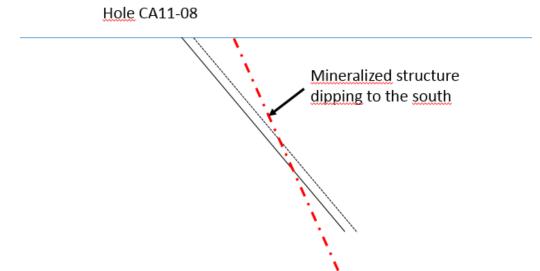


Figure 35: Conceptual sketch of vein orientation \pm 10 degrees

- Camera inspection of hole CS-20-22

The work consisted of a visual inspection of the drillhole CS-20-22 (Figure 36) for the mineralized veins geometric characterization that would be visible around the interval 409 m and 560 m.

Figure 36: The camera down hole CS-20-22.

Based on the recorded video footage, it has been determined that the first structure (415.28 m) is approximately N60-80 degrees dipping approximately 55-65 to the south (Figure 37 and Figure 38).

The second vein (567.65 m) is approximately N90-110 degrees dipping approximately 60-70 to the south (Figure 39 and Figure 40).

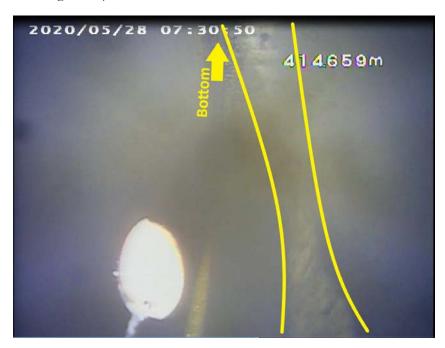


Figure 37: Vein contact at 414.659 m (measured by the depth sensor), orientation specified with the fishing sinker

Figure 38: Vein in lateral view at 414.671 m (measured by the depth sensor)

July 2020

78

Figure 39: Vein contact at 566.961 m (measured by the depth sensor)

Figure 40: Vein in lateral view at 567.022 m (measured by the depth sensor)

10 Drilling (Item 10)

10.1 Underground drilling

Two programs of underground drilling were done at Castle Mine (Level 1 or 70-foot Level access by Adit). The first program started in June 2018 and the second program started in October 2019.

10.1.1 Underground drilling program 2018

For the underground drilling program, a total of fifty-eight (58) holes were drilled from June 13 to September 24, 2018 (Figure 41). These holes represent 672.06 meters of core.

The purpose of the 2018 underground drilling program was to confirm the cobalt values in the vein structures (Table 15). Highlights of this part of the whole program in 2018 include:

- Hole CA18-001 results with 2.28% Co, 261 g/t Ag and 1.65% Ni over 7 m.
- Hole CA18-002 indicating 1.87% Co, 4763 g/t Ag, 1.29% Ni and 1.19 g/t Au over 2.54 m.
- Hole CA18-003 indicating 3.16% Co, and 10741 g/r Ag over 0.60 m.

The drilling program allow to test the continuity of the mineralised veins. The assay results support the extension and the continuity of the mineralised veins at the western part of the first level at Castle Mine.

Table 15: Highlights of underground drilling program 2018

Hole name	From (m)	To (m)	Length (m)	Ag (g/t)	Co (%)	Ni (%)	Au (g/t)
CA18-001	0.00	7.00	7.00	261	2.28	1.65	
CA18-001	0.00	6.06	6.06	302	2.63	1.90	0.30
CA18-001	0.00	2.20	2.20	743	3.74		
CA18-002	1.46	6.97	5.51	2 620			
CA18-002	1.46	6.02	4.56	3 165			
CA18-002	2.17	6.02	3.85	3 737	1.33		
CA18-002	4.46	6.02	1.56	7 743			
CA18-002	2.17	2.75	0.58	3 907			
CA18-002	3.48	6.02	2.54	4 763	1.87	1.29	1.19
CA18-003	5.02	9.25	4.23	1 566	0.46		
CA18-003	6.35	6.95	0.60	10 741	3.16		
CA18-054	9.71	10.72	1.01	3 213			
CA18-054	10.39	10.72	0.33	9 816	0.04	0.01	0.41

Figure 41: Underground drillhole locations on the property, 2018 drilling program

10.1.2 Underground drilling program 2019

The drilling program started in October 2019 on Level 1 (or 70-foot Level) of Castle Silver Mine and was accessed by Adit. During this campaign, 47 short holes were drilled (C-U-19-001 to C-U-19-047; Figure 42, Figure 43 and Figure 44).



Figure 42: Location of the underground drill holes program 2019.

This underground drilling program consisted of very short drill holes on the western side of the Castle Mine to test the continuity of the mineralised veins (Figure 46). Multiple prospective areas of the first level were tested. Holes were drilled from eight setups using AQ diameter drill core. Samples were collected using a 0.3-meter average length, 1.5-meter maximum length. Drill core recovery averaged 95%.

HOLE NAME EASTING NORTHING **ELEVATION** AZIMUT DIP LENGTH IN START **FINISH** THE HOLE (M) C-U-19-001 519200.4 5280460.78 360 269 88.7 5.00 15-10-2019 16-10-2019 C-U-19-002 519224.70 5280472.83 7.50 17-10-2019 18-10-2019 360 321 -67 C-U-19-003 519224.67 5280472.78 279 2.75 18-10-2019 18-10-2019 360 -68 C-U-19-004 519224.85 5280473.21 360 341 -77 1.96 19-10-2019 19-10-2019 C-U-19-005 519224.83 5280473.13 360 271 -56 7.65 20-10-2019 20-10-2019 C-U-19-006 519224.83 5280473.13 360 234 -58 7.80 20-10-2019 20-10-2019 C-U-19-007 21-10-2019 519215.7 5280468.24 360 134 80 21-10-2020 3.60 C-U-19-008 519215.7 5280468.24 360 125 68 9.20 21-10-2019 22-10-2019 22-10-2019 C-U-19-009 519215.7 5280468.24 360 118 62 3.32 22-10-2019 150 22-10-2019 C-U-19-010 519215.7 5280468.24 360 80 3.90 22-10-2019 C-U-19-011 519215.7 5280468.24 160 22-10-2019 22-10-2019

Table 16: Underground drill holes data, program 2019.

NI 43-101 Technical Report for Castle East Robinson zone – July 2020

HOLE NAME	EASTING	NORTHING	ELEVATION	AZIMUT	DIP	LENGTH IN THE HOLE (M)	START	FINISH
C-U-19-012	519215.5	5280467.67	360	100	67	10.88	22-10-2019	23-10-2019
C-U-19-013	519215.5	5280467.67	360	117	70	5.00	23-10-2019	24-10-2019
C-U-19-014	519228.8	5280477.47	360	127	72	1.30	25-10-2019	25-10-2019
C-U-19-015	519228.8	5280477.47	360	127	60	1.20	25-10-2019	25-10-2019
C-U-19-016	519228.8	5280477.47	360	127	65	5.60	25-10-2019	26-10-2019
C-U-19-017	519229.4	5280477.84	360	100	50	3.17	26-10-2019	26-10-2019
C-U-19-018	519229.4	5280477.84	360	100	45	2.46	26-10-2019	26-10-2019
C-U-19-019	519229.4	5280477.84	360	100	60	3.23	26-10-2019	27-10-2019
C-U-19-020	519237.7	5280483.6	360	200	65	4.70	27-10-2019	27-10-2019
C-U-19-021	519237.7	5280483.6	360	209	60	6.80	27-10-2019	28-10-2019
C-U-19-022	519237.7	5280483.6	360	163	68	6.50	28-10-2019	28-10-2019
C-U-19-023	519238	5280484	360	68	59	2.57	29-10-2019	29-10-2019
C-U-19-024	519238	5280484	360	73	70	2.00	29-10-2019	29-10-2019
C-U-19-025	519238	5280484	360	116	72	2.78	29-10-2019	29-10-2019
C-U-19-026	519238	5280484	360	116	52.4	3.65	29-10-2019	30-10-2019
C-U-19-027	519238	5280484	360	18	60	3.68	30-10-2019	30-10-2019
C-U-19-028	519238	5280484	360	265	55	4.70	31-10-2019	31-10-2019
C-U-19-029	519238	5280484	360	265	45	2.30	31-10-2019	31-10-2020
C-U-19-030	519238	5280484	360	265	63	6.66	31-10-2019	3-11-2019
C-U-19-031	519238.1	5280471.44	360	21	51.2	3.65	4-11-2019	4-11-2019
C-U-19-032	519238.1	5280471.44	360	8	49	2.30	4-11-2019	5-11-2019
C-U-19-033	519238.1	5280471.44	360	315	63.5	3.85	5-11-2019	5-11-2019
C-U-19-034	519238.1	5280471.44	360	315	64.5	3.20	5-11-2019	5-11-2019
C-U-19-035	519238.1	5280471.44	360	315	61.6	4.15	6-11-2019	6-11-2019
C-U-19-036	519238.1	5280471.44	360	315	65.8	6.20	6-11-2019	6-11-2019
C-U-19-037	519238.1	5280471.44	360	140	66.5	6.20	6-11-2019	6-11-2019
C-U-19-038	519238.1	5280471.44	360	140	67.1	2.20	7-11-2019	7-11-2019
C-U-19-039	519238.1	5280471.44	360	140	69	0.33	7-11-2019	7-11-2019
C-U-19-040	519238.1	5280471.44	360	140	68.3	4.20	7-11-2019	8-11-2019
C-U-19-041	519238.1	5280471.44	360	140	60.2	10.50	8-11-2019	9-11-2019
C-U-19-042	519238.1	5280471.44	360	140	56.6	8.00	9-11-2019	9-11-2019
C-U-19-043	519238.1	5280471.44	360	140	64.5	11.00	9-11-2019	10-11-2019
C-U-19-044	519238.1	5280471.44	360	140	-62.6	9.20	10-11-2019	11-11-2019
C-U-19-045	519238.9	5280472.09	360	140	-58.5	9.00	11-11-2019	13-11-2019
C-U-19-046	519238.9	5280472.09	360	140	-49	4.70	13-11-2019	13-11-2019
C-U-19-047	519238.9	5280472.09	360	130	-54	5.45	13-11-2019	14-11-2019

July 2020

83

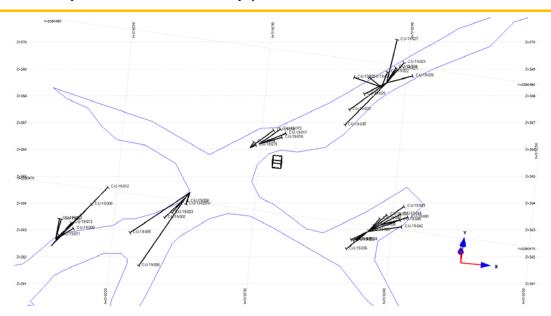


Figure 43: Perspective view showing the orientation of the underground drill holes

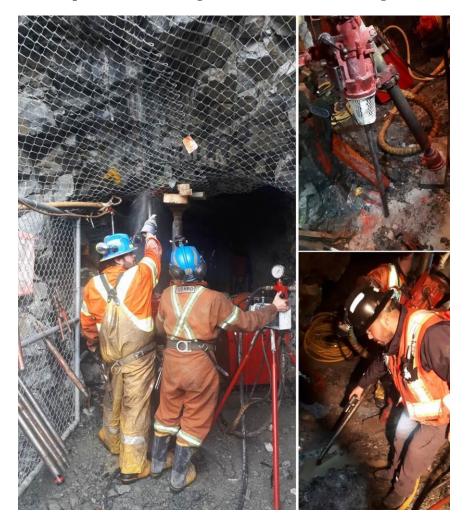


Figure 44: Underground drilling with electrical drill (drill size AQ)

Figure 45: Photos of dry and wet core taken from hole C-U-19-01

Figure 46: A) Showing collars marked using a labelled wood piece; B) Drill hole following the quartz vein; C) Core showing silver and cobalt-arsenides mineralisation

A total of 297 core samples were assayed at ALS laboratory (not including blank and standards). The table below (Table 17) show the highlights of the mineralised intervals intersected during this program.

Table 17: Highlights assay results of the underground program 2019

Hole Name	From	То	Length (m)	Certificate	Au ppm	Ag ppm	Co ppm	Ni ppm
C-U-19-002	0	0.3	0.3	RY19294653	0.368	36	16550	10850
C-U-19-002	0.9	1.2	0.3	RY19294653	0.076	102	32300	30100
C-U-19-002	1.2	1.5	0.3	RY19294653	0.175	24	25000	31700
C-U-19-002	4.3	4.6	0.3	RY19294653	0.743	3	138	60
C-U-19-004	0	0.4	0.4	RY19294653	0.011	381	11200	3190
C-U-19-005	0	0.34	0.34	RY19294653	0.134	23	24500	18200
C-U-19-005	0.67	1	0.33	RY19294653	10.75	41	33700	11900
C-U-19-005	1	1.33	0.33	RY19294653	0.991	8	6800	1550
C-U-19-005	1.33	1.66	0.33	RY19294653	2.06	15	10350	1940
C-U-19-005	1.66	2	0.34	RY19294653	1.12	33	2040	160
C-U-19-006	0	0.3	0.3	RY19294653	0.198	5	25800	20200
C-U-19-006	0.3	0.6	0.3	RY19294653	0.012	539	39600	4860
C-U-19-006	1.2	1.5	0.3	RY19294653	0.126	5570	4050	250
C-U-19-006	1.5	1.8	0.3	RY19294653	0.06	4370	4020	100
C-U-19-006	1.8	2.1	0.3	RY19294653	0.394	26	26600	14850
C-U-19-006	4.8	5.1	0.3	RY19294653	0.439	1	21000	20200
C-U-19-006	5.1	5.4	0.3	RY19294653	1.345	2	37000	54200
C-U-19-008	3.6	3.9	0.3	RY19294653	0.005	5	12200	1470
C-U-19-008	7.8	8.1	0.3	RY19294653	0.045	5	10650	1080
C-U-19-012	3.90	4.20	0.3	RY19295726	0.036	4	14300	1490
C-U-19-012	4.20	4.50	0.3	RY19295726	0.033	2	12600	1350
C-U-19-012	6.9	7.2	0.3	RY19295726	0.005	5	11150	1310
C-U-19-016	2.4	2.7	0.3	RY19295726	2.67	17	1190	300
C-U-19-016	2.7	3	0.3	RY19295726	18.1	19	7910	2120
C-U-19-016	3.3	3.6	0.3	RY19295726	22.7	49	10300	3310
C-U-19-016	3.9	4.2	0.3	RY19295726	0.71	10	7330	3170
C-U-19-016	4.2	4.5	0.3	RY19295726	0.677	5	18800	11900
C-U-19-016	4.5	4.8	0.3	RY19295726	0.682	9	4520	810
C-U-19-018	2	2.4	0.4	RY19295726	0.003	1080	544	130
C-U-19-032	0	0.2	0.2	RY19295752	0.949	69	32900	2110
C-U-19-033	0	0.4	0.4	RY19295752	0.047	18	10500	130
C-U-19-033	0.4	0.7	0.3	RY19295752	0.071	22	15450	140
C-U-19-033	0.7	1	0.3	RY19295752	0.198	16	21500	270
C-U-19-033	1	1.3	0.3	RY19295752	1.785	31	12700	2200

Cobalt grades intersected in the Castle Mine (refer to Feb. 19, 2019 news release), previously only exploited for its native silver, are considered very high in a global context. The drill hole C-U-19-006 return 3.96% Co over 0.3m. This program also shows also some silver-rich intervals with a maximum in at hole C-U-19-006 which returned 5570 g/t Ag over 0.3m.

The assays results revealed unexpected high-grade gold in addition to more high-grade cobalt, silver and nickel (Table 17, Figure 47 and Figure 48 and Figure 49). This is now considered an emerging

new discovery area open for considerable potential expansion with easily accessible mineralization from the first level near the adit mine entrance.

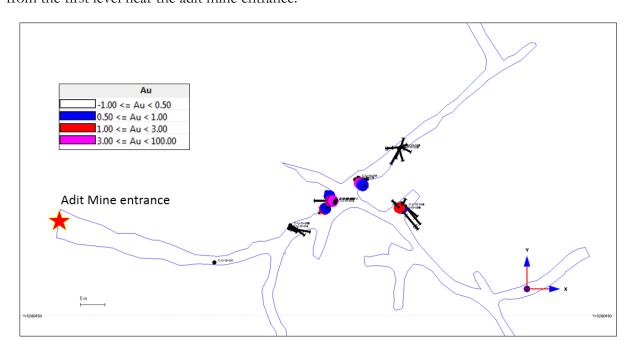


Figure 47: Drill holes distribution program 2019 with assays (color coded by Au g/t)

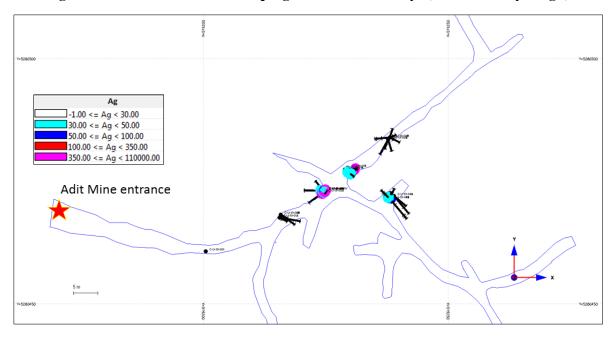


Figure 48: Drill holes distribution of 2019 program with assays (color coded by Ag g/t)

From the same Castle waste material, Canada Cobalt has poured initial silver dore bars (refer to Oct. 16, 2019 news release) while its proprietary and environmentally friendly Re-2OX Process has demonstrated the ability to remove 99% of the arsenic to produce a battery-grade cobalt sulphate (refer to Aug. 15, 2018 news release).

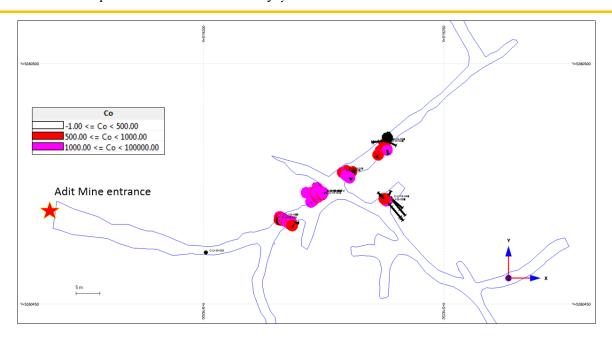


Figure 49: Drill holes distribution of 2019 program with assays (color coded by Co ppm)

10.2 Surface diamond drilling

Several holes were drilled from the surface since 2017 (Figure 50). A total of three drilling programs from the surface were realised on the CCW property totalling 9342.1 m (2017 program totalling 2405 m; 2018/2019 program totaling 3175.83 m and the last program 2019/2020 totaling 3761.27 m).

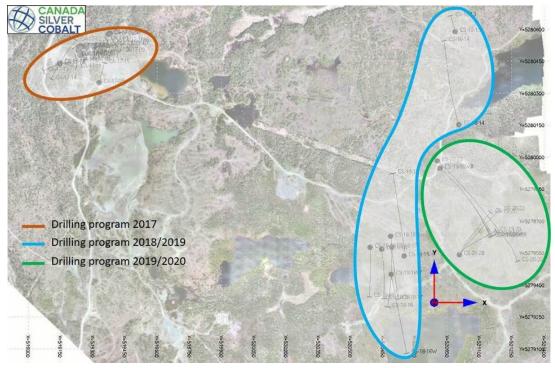


Figure 50: Hole localisations drilled from the surface from 2017

88

10.2.1 **Drilling program 2017**

Canada Silver Cobalt Works started a surface drilling program in July 2017. During this campaign, twenty-two (22) diamond drill holes were collared, totaling 2405 m of diamond drill core (Table 18). A Cavity Monitoring Survey (CMS) of the first level workings totaling approximately 1,700 meters has provided valuable new information in 3D to aid in drilling from surface immediately around the Castle Mine.

The 2017 drilling program tested the thickness of several mineralized zones. Some of these are exposed at surface. The assay results support the extension at depth of the mineralized zone at the eastern zone. The mineralized zones are associated with the quartz veins containing pyrite and cobalt arsenides mineralization.

The results of the 2017 drilling campaign were not incorporated into a resource model and were used to target future drilling campaigns. Table 18, shows the detailed information of the diamond holes drilled on Haultain property in 2017.

Table 18: Diamond drill holes data program 2017 (UTM coordinates; NAD 83, zone 17)

Hole Name	Easting	Northing	Elevation	Azimuth	Dip	Length (m)
CA-17-01	519231.83	5280516.47	382.72	189.91	-48	95
CA-17-02	519233.80	5280518.91	382.62	148.98	-50	110
CA-17-02bis	519239.38	5280522.48	383.04	151.69	-60	95
CA-17-03	519250.67	5280518.77	384.71	136.87	-45	98
CA-17-03bis	519250.24	5280519.26	384.67	131.48	-60	80
CA-17_04	519230.38	5280501.27	384.72	138.21	-45	71
CA-17_05	519267.86	5280516.03	387.48	165.42	-45	50
CA-17_06	519236.74	5280506.75	384.76	113.33	-45	62
CA-17_07	519241.83	5280484.31	389.36	317.10	-45	62
CA-17_08	519370.84	5280577.73	384.47	181.08	-45	110
CA-17_08bis	519370.92	5280578.49	384.42	184.59	-60	125
CA-17_09	519375.55	5280578.94	384.63	149.68	-45	125
CA-17_09bis	519375.25	5280579.47	384.44	150.94	-60	113
CA-17_10	519379.63	5280582.79	384.52	127.98	-45	107
CA-17_10bis	519378.97	5280583.34	384.57	134.66	-60	113
CA-17_11	519145.67	5280444.50	373.75	110.05	-46	113
CA-17_12	519144.93	5280445.41	373.67	31.71	-62	281
CA-17_13	519144.79	5280439.39	373.72	246.25	-48	131
CA-17_14	519142.89	5280439.84	373.44	207.75	-50	128
CA-17_15	519327.87	5280350.99	392.57	17.47	-51	152
CA-17_16	519240.32	5280479.12	389.74	262.98	-70	68
CA-17_17	519305.09	5280521.45	389.79	58.37	-55	116

July 2020

89

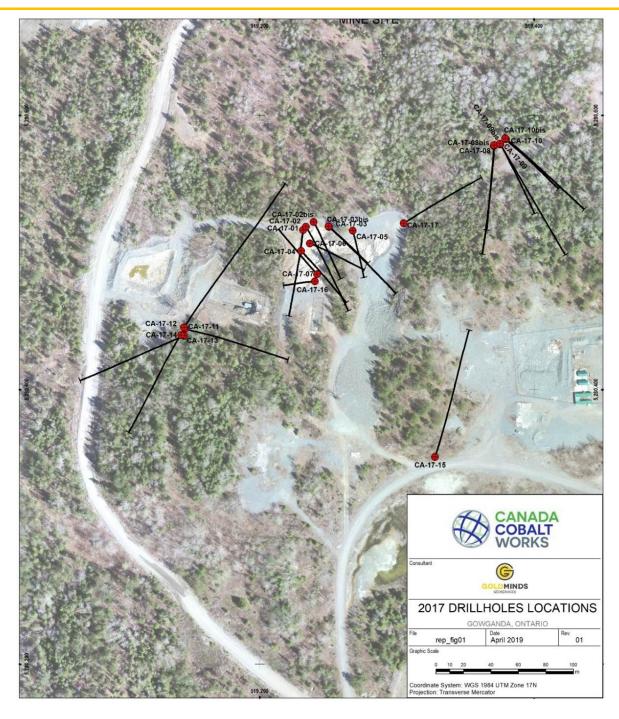


Figure 51: Drill hole locations, 2017 drill program

The 2017 drill cores consists mainly of fine- to medium-grained Nipissing Diabase with some small intervals of Archean sediments. The arseno-cobalt mineralisation is mainly within quartz veins some of them close to the surface. The assays results validate the lateral extensions of the known structures close to the mine entrance. Table 19 shows the main results.

	From		Sample	Length					
Hole Name	(m)	To (m)	Number	(m)	Au g/t	Ag g/t	Co ppm	Cu ppm	Ni ppm
CA-17-04	61.00	62.00	15607	1.00	0.005	0.8	33	53	218
CA-17-06	6.00	7.00	15622	1.00	0.005	1.2	312	88	96
CA-17-06	61.00	62.00	15680	1.00	0.25	0.2	87	95	23
CA-17-07	1.98	3.00	15681	1.02	0.03	109.2	155	87	176
CA-17-07	3.00	4.00	15682	1.00	0.04	53.6	102	174	148
CA-17-08bis	10.00	11.00	15866	1.00	0.8	62.4	62	1,100	26
CA-17-08bis	31.00	32.00	15888	1.00	0.25	0.1	35	100	309
CA-17-09	63.65	64.00	16252	0.35	0.005	58.3	1,425	66	74
CA-17-16	3.85	4.50	16147	0.65	0.61	8.8	15,476	215	6,548
CA-17-16	4.50	4.85	16148	0.35	0.02	1.2	447	185	352
CA-17-16	26.00	26.35	16152	0.35	0.01	0.1	388	112	179

Table 19: Highlights from the 2017 drilling program

10.2.2 **Drilling program 2018/2019**

Canada Silver Cobalt Works started a surface drilling program in September 2018 in an underexplored area prospective for a new deposit type at 1.5 km east-southeast of the Castle Mine (Figure 52).

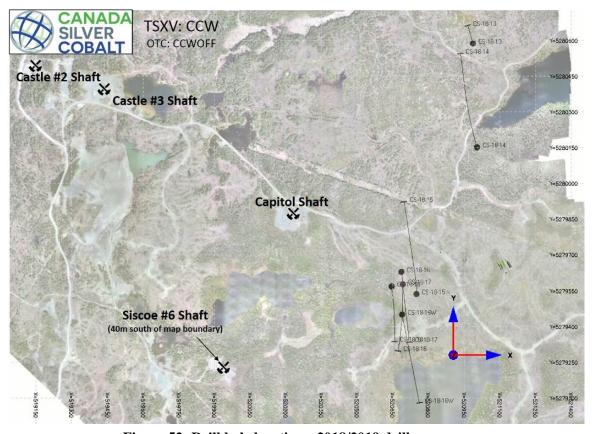


Figure 52: Drill hole locations, 2018/2019 drill program

During this campaign, eight (08) diamond holes were collared, including one wedge (from hole CS-18-16) totaling 3175.83 m of diamond drill core (Table 20).

Table 20: Diamond drill holes data program 2018/2019 (UTM coordinates; NAD 83, zone 17)

Hole Name	Easting	Northing	Elevation	Azimuth	Dip	Start (m)	End (m)	Length (m)
CS-18-13	520985	5280590	400	344.1	-49	0	119.08	119.08
CS-18-14	521002	5280154	400	344.1	-49	0	600	600
CS-18-15	520747	5279538	400	4	-50	0	600	600
CS-18-16	520684	5279631	405	169	-50	0	471	471
CS-18-16W	520687	5279451	213.3	169	-50	262.8	586.55	323.75
CS-18-17	520690	5279579	408	175	-50	0	356	356
CS-18-18	520643	5279570	406	176	-50	0	350	350
CS-19-19	520589	5279578	400	175	-50	0	356	356

During this program several mineralized zones were intersected. The Table 21, shows the highlights from diamond holes drilled on the southeastern part of the property.

Table 21: Highlights from the 2018/2019 drilling program

Hole Name	From (m)	To (m)	Sample Number	Length (m)	Au (g/t)	Ag (g/t)	Cu (ppm)	Ni (ppm)
CS-18-15	109.22	109.96	Z047736	0.74	3.78	3	0	0
CS-18-16	228.74	229.3	z047833	0.56	0.97	0	0	0
CS-18-16	268.23	268.32	z047864	0.09	1.06	0	0	0
CS-18-16	273.58	274.31	z047875	0.73	0.87	0	0	0
CS-18-16	274.31	274.44	z047876	0.13	6.18	2	6 400	60
CS-18-16W	271.88	272.22	z047895	0.34	4.65	2	3 530	50
CS-18-16W	315.97	316.34	z047915	0.37	5.52	26	4 300	120
CS-18-16W	355.33	356.65	z047934	1.32	1.59	34	1 910	60
CS-18-16W	433.87	434.07	z047954	0.20	0.045	0	20	2190
CS-18-18	172.26	172.94	z049006	0.68	0.52	0.5	50	10
CS-18-18	188.00	188.90	z049022	0.90	0.62	1	390	50
CS-18-18	259.00	260.00	Z049186	1.00	0.55	0.5	90	50
CS-19-19	295.00	296.00	Z049472	1.00	0.58	5	160	40
CS-19-19	296.00	297.00	Z049473	1.00	0.75	3	190	40
CS-19-19	297.00	298.00	Z049474	1.00	0.52	2	50	60
CS-19-19	298.00	299.00	Z049475	1.00	15.2	11	470	30

The mineralised intervals were within Archean volcanic lithologies of tuff, mafic to ultramafic units. These units are locally magnetic, have 1 to 2% pyrrhotite in the groundmass, and host veins of quartz/carbonates up to 5cm wide with minor galena locally folded into foliation plans. Small brecciated zones with strong carbonate alteration with feldspar porphyry syenite were present.

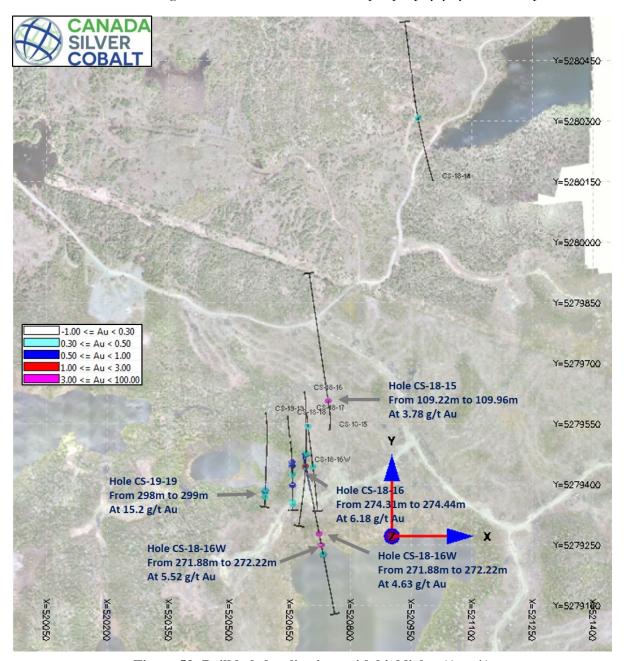


Figure 53: Drill hole localisations with highlights (Au g/t)

More drilling from the surface is recommended to test the lateral extension of the mineralized zone in the eastern part of the property.

10.2.3 **Drilling program 2019/2020**

From September 2019 to February 2020, a diamond drilling campaign was undertaken on Canada Silver Cobalt Work's property. A total of 7 NQ diamond drill holes (including four wedges CS-19-08W1 to -W4 from hole CA1108; Table 22) for a total of 3761.27 meters of cores were drilled (CS-19-08W1; -08W2; -08W3; -08W4; CS-19-20; CS-19-21; CS-20-22).

A total of 849 samples were assayed at ALS laboratory (Rouyn Noranda, Québec) and at Swastika Laboratories Ltd (at Swastika, Ontario). For the QA/QC we used 45 samples characterized as blanks and 39 standards (Table 23).

Table 22: Diamond drill holes collars data (coordinates in UTM NAD83. Zone 17)

Hole Name	Easting	Northing	Elevation	Azimuth	Dip	Length (m)	Hole Type	Start (m)	End (m)
CS-19-08W1	520914	5279950	415	134	-50	611	wedge	495.03	611
CS-19-08W2	520914	5279950	415	134	-50	602	wedge	444.3	602
CS-19-08W3	520914	5279950	415	134	-50	620	wedge	425	620
CS-19-08W4	520914	5279950	415	134	-50	629	wedge	371.4	629
CS-19-20	521004	5279544	415	43	-70	701	surface	0	701
CS-19-21	521004	5279544	415	30	-70	755	surface	0	755
CS-20-22	521004	5279544	415	36.8	-67	695	surface	0	695
CS-20-23	520902	5279984	415	133.1	-51.3	884	surface	0	884

Table 23: Samples sent to the laboratory by hole number

Hole Name	Sample	Blank	Standard
CS-19-08W1	22	1	1
CS-19-08W2	31	1	1
CS-19-08W3	38	1	1
CS-19-08W4	61	4	4
CS-19-20	275	22	16
CS-19-21	248	12	12
CS-20-22	90	4	4
CS-20-23	166	9	9
Σ	931	54	48

Table 24: Highlights from the 2019/2020 drilling program

	From		Sample	Length	Au	Ag	Co	Cu	Ni
Hole Name	(m)	To (m)	Number	(m)	(g/t)	(g/t)	(ppm)	(ppm)	(ppm)
CS-19-08W1	558.00	558.50	Z049936	0.50	0.005	268	26	368	36
CS-19-08W1	558.50	559.00	Z049937	0.50	0.01	422	27	241	42
CS-19-08W1	559.00	559.40	Z049938	0.40	0.01	1 375	30	416	47
CS-19-08W1	559.40	560.00	Z049939	0.60	0.24	50 583	3 033	2 073	7 085
CS-19-08W1	560.00	560.50	Z049942	0.50	0.005	1 202	902	649	189
CS-19-08W1	569.00	570.00	Z049948	1.00	0.005	53	2 380	137	637
CS-19-08W2	546.00	546.30	Z048012	0.30	0.005	108	35	253	45
CS-19-08W2	546.30	546.60	Z048013	0.30	0.005	2 657	37	398	46
CS-19-08W2	546.60	546.90	Z048014	0.30	0.005	9 217	50	694	50
CS-19-08W2	546.90	547.20	Z048015	0.30	0.005	13 091	587	326	112
CS-19-08W2	547.20	547.50	Z048016	0.30	0.005	70 380	26 090	546	3 234
CS-19-08W2	547.50	548.00	Z048019	0.50	0.005	769	97	349	57
CS-19-08W2	567.70	568.00	Z048028	0.30	0.005	4	1 070	119	286
CS-19-08W3	562.00	562.50	Z048046	0.50	0.005	1	662	27	192
CS-19-08W3	568.00	568.65	Z048054	0.65	0.005	52	14 910	5 947	613
CS-19-08W3	568.65	569.00	Z048055	0.35	0.005	65	10 900	5 291	459
CS-19-08W4	416.60	417.60	Z048090	1.00	0.005	0	121	3	1 933
CS-20-22	409.45	409.85	Z048840	0.40	0.005	369	91	344	191
CS-20-22	416.00	416.50	Z048849	0.50	0.005	111	24	109	80
CS-20-22	563.90	564.15	Z048937	0.25	0	258	65	262	179
CS-20-22	564.15	564.5	Z049966	0.35	0.03	8 338	6 570	369	990

The drilling program of 2019/2020 was confirmed after carrying out visual inspection of drill hole CA1108 using the downhole camera for geometric characterisation of the massive silver mineralisation. The drill hole CA1108 pushed through the Archean volcanics and entered the Nipissing diabase (gabbro), cutting a remarkable 40,944 grams per tonne silver (1,194 ounces per ton) as well as 0.91% cobalt over 0.45 meters within a broader core length of 3.1 meters grading 6,476 g/t silver (189 ounces per ton) and 0.14% cobalt (refer to Aug. 25, 2011 news release, Granada Gold) at a vertical depth of approximately 420 meters.

The Robinson Zone discovery is unique in the district as it's a grassroots find of a potential "blind" deposit aided by geophysics (induced polarization surveys) and a custom-built, high-technology downhole camera.

The 2019/2020 program started with four successful short wedge holes (wedges CS-19-08W1 to -W4) from hole CA1108, totaling 726.27 meters. These holes provided important initial pierce points into this northwest-southeast striking and southwest dipping vein structure.

July 2020

Wedge hole CS-19-08-W01 intersected a visually highly mineralized core interval of 4.65 meters (15.25 feet) approximately 10 meters above and west of CA-11-08 (Figure 54). Significantly, this interval includes a large vein of 20 cm (8 inches) estimated true width of intense native silver, pervasive carbonate alteration and a visually higher silver-to-calcite ratio than CA-11-08. CA-19-08-W01, returned 50,583.29 g/t Ag over 0.60 meters within 1.5 meters of 20,741 g/t. Wedge CS-19-08W2 have returned 70,380 g/t silver (2,053 oz/ton) over 0.30 meters within a broader zone of 1.4 meters grading 20,136 g/t (587 oz/ton) and 4 meters (core length) of 7,259 g/t (212 oz/ton). The Table 24, show the highlights from diamond holes drilled on the southeastern part of the property.

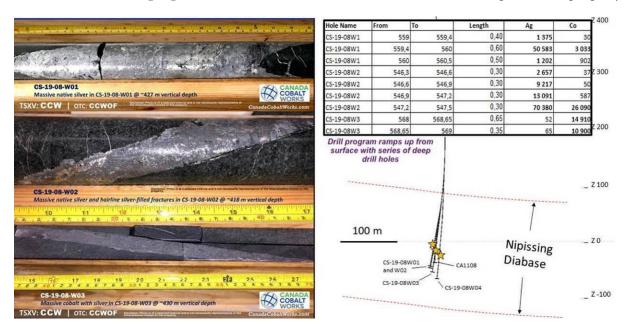


Figure 54: Massive silver mineralisation in hole CS-19-08 W01, -W02 and -W04 with vertical section showing the thickness of the Nipissing dabase

The shoot of high-grade mineralization within the Robinson Zone discovery vein is now believed to extend for at least 15 meters (49.2 feet) and was not delimited in any way through the four wedge holes that each intersected multiple veins and silver-filled fractures.

Canada Silver Cobalt Works has just commenced a program of new drill holes from surface (June 2020) aimed in part at determining the full extent of this highly mineralized "shoot".

The deposit model and history of the Camp, and the broader Northern Ontario Silver-Cobalt district, shows that these narrow but unusually rich vein shoots (generally one to six inches in true width and in rare cases up to ~12 inches in true width) can extend for tens of feet or more (pinching and swelling). They are typically surrounded by strongly mineralized wall rock and often within a network of closely spaced parallel veins and veinlets in addition to silver-filled fractures.

July 2020

11 Sample preparation, analysis and security (Item 11)

Only the core samples from the diamond holes CA1108, CS-19-08W01 to -W04, CS-19-20, CS-19-21, CS-20-22 and CS-20-23 were used for the mineral estimation presented here.

The sampling approach was established by GMG during the drilling work. All logging activities took place at the core shack located on CCW's property following procedures further described herein.

Holes CS-19-08-W01 to W04 were wedges drilled off the historic CA-11-08 hole (Figure 55). The original hole was re-opened and a modern gyro survey was completed to confirm the location of the hole at depth and then the wedges were drilled from different depths using NQ diameter drill core.

Figure 55: Drilling program 2019/2020, with drill core showing massive silver mineralisation

At reception, all core boxes were stacked on tables outside the main container where logging is performed. All core boxes were progressively opened and placed in order on the logging tables

(Figure 56). All meterage wood blocks were verified to control core box numbers and any possible mistakes made during drilling procedures.

Logging procedures included a mineral description of geological units and sub-units in terms of color, grain size, alteration, accessory minerals and fracture descriptions. These descriptive data were entered on Microsoft Excel® sheet and compiled by drill hole. Pictures of the core boxes were taken, one showing dry core and a second damp cores. Once the geology is described, the geologist marks the beginning and the end of the samples directly onto the core with a yellow-colored wax crayon.

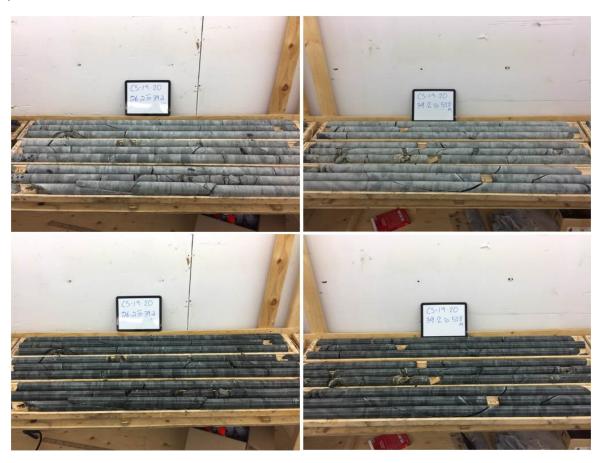


Figure 56: Photos of drill core taken from hole CS-19-20 (wet and dry)

Sample length average is of 1 meter. Sample length of 0.3 to 1 meter were selected for intervals with clear signs of minerals (pyrite, chalcopyrite, pyrrhotite, cobalt-arsenides and native silver). No samples were taken within the units where no significant sulfides were observed.

Numbered sample tags were placed at the beginning of each sample, together with distinctive arrows on the core marking the beginning and end intervals. The tag numbers are integrated in the database on Microsoft Excel® sheet.

Blanks and standards tags were inserted after each batch of 20 samples for the drill holes.

- Samples preparation

All core samples were cut in half using the hydraulic splitter or wet cutting saw for rock at CCW's facilities (Figure 57 and Figure 58). During winter months, use of splitter avoids issues related to the use of water.

For all samples, half of the core was retained and placed back in the core box, respecting the original orientation and position. Sample tags were stapled to the bottom of the box at the beginning of each sample interval, so that each sample could be relocated following future handling, transportation and storage.

Figure 57: Electrical saw used for cutting the core samples

Figure 58: Sample placed in a plactic bag

Samples were collected using a 0.3-meter minimum length to one-meter maximum length. Drill core recovery averaged 95%. Two quality control samples (blank and standards) were inserted into each batch of 20 samples.

The core was cut using a hydraulic splitter or a rock saw, with one half placed in a plastic bag with the sample tag and sealed, while the second half was returned to the core box for storage on site. For the high-grade intercepts, only one-quarter of the core was sent for assaying.



Figure 59: Core samples in rice bags ready to ship to the laboratory

All samples were securely bagged and sealed with plastic zip-ties in translucent plastic bags before being placed, by group of seven (7) to nine (9), in much larger rice bags (Figure 59). All rice bags were shipped to ALS laboratory (Rouyn Noranda, Québec) or to Swastika laboratory (at Swastika, Ontario) for gold fire assay (AAS and gravimetric finish), silver by aqua regia digestion ICP-AES and multi-elements (AU-AA24, AU-AA25, AU-GRA21, ME-ICP41 and AU-GRA22).

Sample submittal forms were included in emails informing the laboratory of the date and method of expedition of every shipment made regarding these samples. Shipped samples were received in good standing.

Once the rock was split or cut, half of the core is left in the core boxes. A tag presenting the information regarding the name of the hole, the number of the box and the beginning and the end of the interval or rock present in the box is affixed on one end of the wooden box. All boxes are then orderly stored on the racks located outside the main containers on CCW's property.

11.1 Sample preparation at the laboratory

The first batch for the core sample analyses were performed at ALS Laboratory (at Rouyn Noranda, Québec). The other core samples were analyzed at Swastika laboratory (at Swastika, Ontario).

After the reception of core samples, they were dried at 80°C in a forced air circulation system, then crushed to > 80% passing 1700 microns (10 mesh) using low chrome steel jaw plates. Then samples were split using a rotary splitter to obtain 2 portions (pulp and reject). Samples were then pulverized to >90% passing 107 microns (150 mesh) using low chrome steel bowl sets or >90% passing 75 microns for multi element analysis. Two aliquots were riffled from the minus fraction and submitted for analysis (weight of these aliquots is around 30g). The grade was calculated with the contribution of each fraction weight.

Where silver was visually and significantly present, a Pulp-Metallic analysis was requested for the silver and gold assays where the entire sample was dried, weighed and crushed over 95% then fully pulverized and passed through 147-mesh screen to create a plus 147-mesh fraction (metallics) and a minus 147-mesh fraction (pulp). The -147 mesh fraction (fines) was run using geochemical analysis with AA finish for Ag, Au, Cu, Ni, and Co. The entire +147 mesh (coarse) fraction was analyzed using gravimetric processes (fire assay) for both Ag and Au to provide a weighted average assay for the entire sample.

11.2 Quality Assurance/Quality Control (QA/QC) program

A rigorous QA/QC program was established by the GMG geologist. This procedure included the systematic addition of blanks and certified standards. Two quality control samples (blanks and standards) were inserted into each batch of 20 samples with one blank every forty samples and a standard alternating every 40 samples (Blank. STD1. Blank. STD2. Blank. etc.) and a blank is also inserted after massive mineralization intervals.

A total of 66 blank samples were assayed by ALS Laboratory and Swastika Laboratory and consist of pure quartz sand (Figure 60, Figure 61 and Figure 62).

July 2020

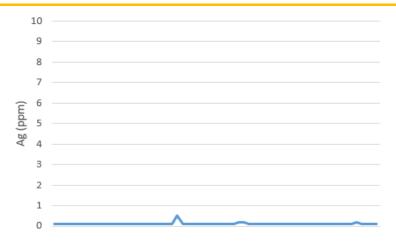


Figure 60: Silver (g/t) in blank samples

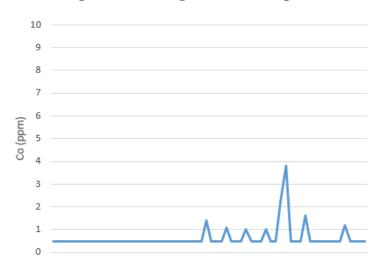


Figure 61: Cobalt (ppm) in blank samples

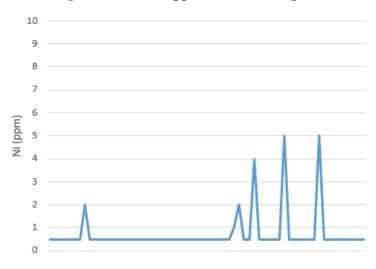


Figure 62: Nickel (ppm) in blank samples

A maximum concentration of 0.5 g/t Ag and a minimum of 0.1 g/t Ag were measured. A maximum concentration of 3.8 g/t Co and a minimum of 0.5 g/t Co were measured. A maximum concentration of 5.0 g/t Ni and a minimum of 0.5 g/t Ni were measured. The assay results of the blank samples showed that there are no anomalous values.

A total of 58 standards, were inserted within core samples. The standard 1 is Oreas 76a, the standard 2 is Oreas 77a, the standard 3 is Oreas 604b, the standard 4 is Oreas 601b and the standard 5 is Oreas 600.

- OREAS 76a (10g units packaged under nitrogen) is one of a suite of six nickel sulphide CRMs (OREAS 72a to OREAS 77a) prepared from high grade massive nickel sulphide ore and barren ultramafic material from the Cosmos Nickel mine operated by Xstrata Nickel located in the Kathleen Valley area approximately 30km north of Leinster in Western Australia. Cosmos is situated within the Agnew-Wiluna portion of the Norseman-Wiluna greenstone belt.
- OREAS 77a (10g units packaged under nitrogen) is one of a suite of six nickel sulphide CRMs (OREAS 72a to OREAS 77a) prepared from high grade massive nickel sulphide ore and barren ultramafic material from the Cosmos Nickel mine operated by Xstrata Nickel located in the Kathleen Valley area approximately 30km north of Leinster in Western Australia.
- OREAS 604b was prepared from a blend of silver-copper-gold bearing ores from Evolution Mining's Mount Carlton Operation in Queensland, Australia and argillic rhyodacite waste rock sourced from a quarry east of Melbourne, Australia.
- OREAS 601b was prepared from a blend of silver-copper-gold bearing ores from Evolution Mining's Mount Carlton Operation in Queensland, Australia and argillic rhyodacite waste rock sourced from a quarry east of Melbourne, Australia.
- OREAS 600 was prepared from gold-silver-copper bearing ore from Evolution Mining's Mount Carlton Operation in Queensland, Australia and blended with argillic rhyodacite waste rock to achieve the desired grades.

Assays were made on 13 standards 1 (Figure 63, Table 25). A maximum concentration of 1.7 g/t Ag and a minimum of 1.3 g/t Ag were measured. A maximum concentration of 1,240 g/t Co and a minimum of 1,100 g/t Co were measured. A maximum concentration of 74,770 g/t Ni and a minimum of 70,550 g/t Ni were measured. The assay results of the standards 1 showed that there are no anomalous values.

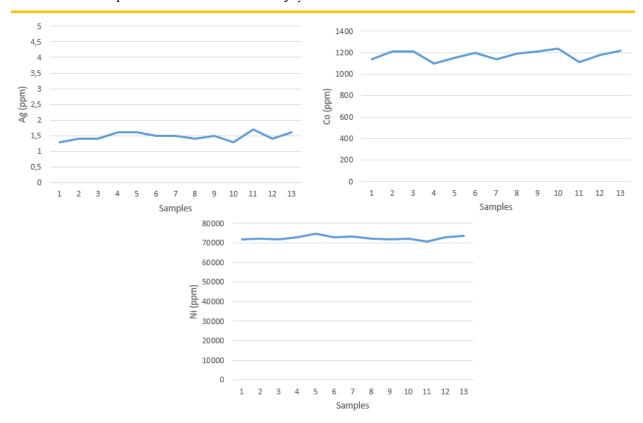


Figure 63: The Ag, Co and Ni concentrations in standard 1

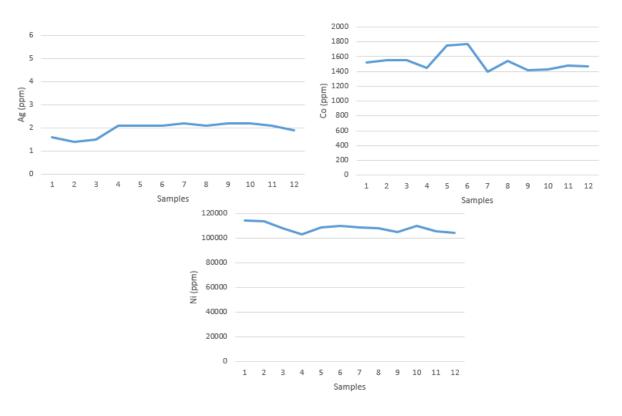


Figure 64: The Ag, Co and Ni concentrations in standard 2

	Oreas 76a	Confiden	ce level	Oreas 76a assays			
	Certified values	Low	High	Average	Min	Max	
Ag ppm	0	0	0	1.48	1.3	1.7	
Co ppm	1215	1206	1225	1176.92	1100.00	1240.00	
Ni %	7,29	7.17	7.41	7.25	7.05	7.47	

Table 25: The concentrations of the standard 1 (Oreas 76a)

Assays were made on 12 standards 2 (Figure 64, Table 26). A maximum concentration of 2.2 g/t Ag and a minimum of 1.4 g/t Ag were measured. A maximum concentration of 1,770 g/t Co and a minimum of 1,400 g/t Co were measured. A maximum concentration of 114,180 g/t Ni and a minimum of 103,170 g/t Ni were measured. The assay results of the standards 2 showed that there are no anomalous values.

Assays were made on 14 standards 3 (Figure 65, Table 27). A maximum concentration of 526.2 g/t Ag and a minimum of 480 g/t Ag were measured. A maximum concentration of 44.9 g/t Co and a minimum of 8.2 g/t Co were measured. A maximum concentration of 673 g/t Ni and a minimum of 16.7 g/t Ni were measured. The assay results of the standards 3 showed that there are anomalous Ni values. Theses irregularities may be caused by the mislabeled standards.

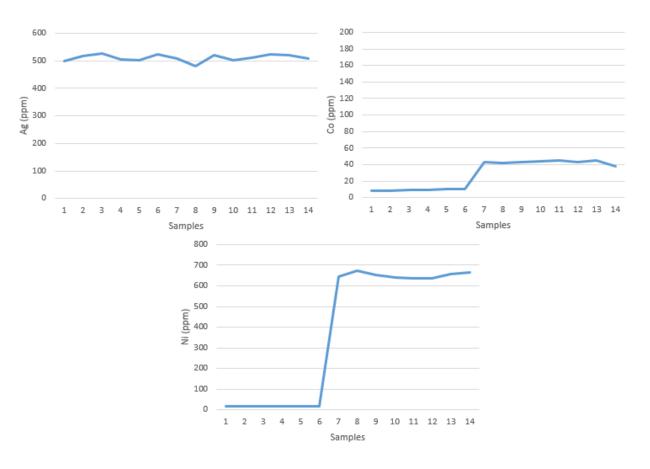


Figure 65: The Ag, Co and Ni concentrations (ppm), standard 3

Table 26:	The concentrations	of the standard	2 (Oreas 77a)
Table 40.	ine concentrations	or aic standard	

	Oreas 77a	Confidence level		Oreas 77a assays		
	Certified values	Low	High	Average	Min	Max
Ag ppm	0	0	0	1.96	1.4	2.2
Co ppm	1675	1578	1773	1527.5	1400.00	1770.00
Ni %	10.71	10.39	11.02	10.83	10.317	11.418

Table 27: The concentrations of the standard 3 (Oreas 604b)

	Oreas 604b	Confidence level		Oreas 604b assays			
	Certified values	Low	High	Average	Min	Max	
Ag ppm	507	499	514	510.95	480	526.2	
Co ppm	10.4	10.1	10.7	28.49	8.2	44.9	
Ni ppm	17.3	16.8	17.7	379.28	16.7	673	

Assays were made on 10 standards 4 (Figure 66, Table 28). A maximum concentration of 54.3 g/t Ag and a minimum of 47.8 g/t Ag were measured. A maximum concentration of 4.3 g/t Co and a minimum of 2.2 g/t Co were measured. A maximum concentration of 24 g/t Ni and a minimum of 2.4 g/t Ni were measured. The assay results of the standards 4 showed that there are no anomalous values.

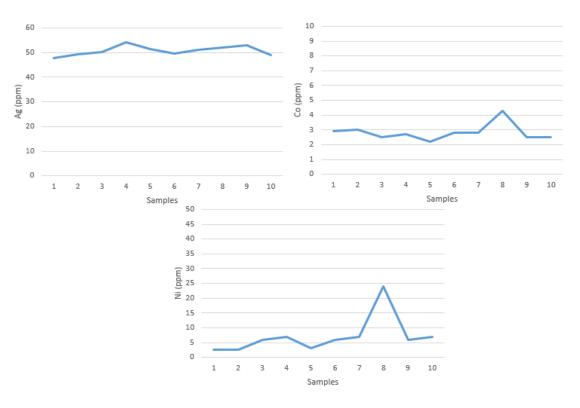


Figure 66: The Ag, Co and Ni concentrations (ppm), standard 4

July 2020

Table 28: The concentrations of the standard 4 (Oreas 601b)

	Oreas 601b	Confidence level		Oreas 601b assays		
	Certified values	Low	High	Average	Min	Max
Ag ppm	50.1	49.4	50.9	50.73	47.8	54.3
Co ppm	2.97	2.89	3.06	2.82	2.2	4.3
Ni ppm	6.54	6.16	6.91	7.12	2.5	24

Table 29: The concentrations of the standard 5 (Oreas 600)

	Oreas 600	Confide	nce level	Oreas 600 assays		
	Certified values	Low	High	Average	Min	Max
Ag ppm	24,8	24.3	25.2	25.98	24.2	27.3
Co ppm	7,06	6.65	7.46	6.72	5.6	7.5
Ni ppm	16.5	15.3	17.7	15.67	13	18

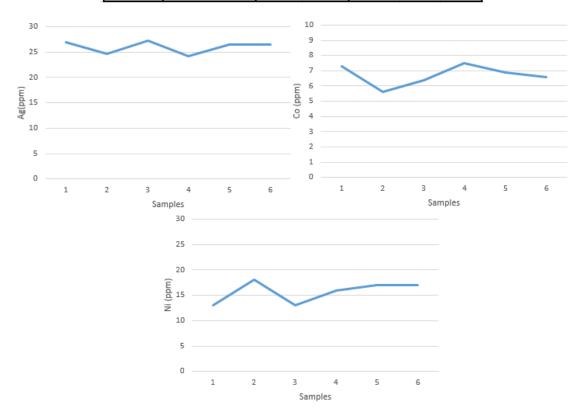


Figure 67: The Ag, Co and Ni concentrations (ppm), standard 5

Assays were made on 6 standards 5 (Figure 67, Table 29). A maximum concentration of 27.3 g/t Ag and a minimum of 24.2 g/t Ag were measured. A maximum concentration of 7.5 g/t Co and a minimum of 5.6 g/t Co were measured. A maximum concentration of 18 g/t Ni and a minimum of 13 g/t Ni were measured. The assay results of the standards 5 showed that there are no anomalous values.

The results from the combination of blank, standards and the internal QA/QC met the quality criteria, indicating that Canada Silver Cobalt Works can rely on these values for the sample program.

11.3 Security

The core sample preparation, handling and transport all followed a protocol established by GMG that included a strict chain of custody from sampling to the laboratory.

M. Rachidi visited the independent ALS laboratory (at Rouyn Noranda, Québec) and Swastika laboratories (at Swastika, Ontario). These laboratories are well-known in Quebec and Ontario. They have a reliable industry reputation and the QA/QC support this affirmation.

Swastika Laboratories and ALS Geochemistry are both ISO-certified labs and are both independent of Canada Silver Cobalt works and GoldMinds Geoservices.

The author believes that the sampling preparation, security, and analytical procedures were adequate and consistent with generally accepted industry best practices.

July 2020

108

12 Data verification (item 12)

12.1 The database

The results of the diamond drilling program were verified and validated by Merouane Rachidi, GMG's QP, after that they have been integrated into the database.

The diamond drillhole collar locations were not yet surveyed with a Total Station. The geologist used a portable GPS for collars location. The azimuth and dip were measured downhole using a Gyro surveying instrument while drilling.

The collar for hole CA1108 was easily identified using the casing, the GPS coordinates and the relative position to the dirt road (Figure 68).

Figure 68: Drill hole location CA1108

The collar surveys are considered adequate for the purpose of a resource estimate, but it is recommended that all collars be surveyed using a total station.

The cut-off date for the database is 28th April 2020. The current mineral resource represents the first NI 43-101 mineral resource at the Robinson zone.

12.2 Site visit

Mr. Rachidi visited the property the last time in May 2020. Mr. Rachidi visited the issuer's core shack located at the property. He was accompanied by Matthew Halliday (President, COO and VP-Exploration). The site visit focused on the verification of the field data including a visual inspection using a downhole camera on hole CS-20-22.

The issuer kept the core from 2011 to current date in the core shack and the core boxes were in good order (Figure 69) and clearly identified, the samples tags were present. The wooden blocks placed at the beginning and end of each drill run still in the boxes and match the indicated footage on each box.

Figure 69: Core shack at Castle silver mine property

12.3 QA/QC program

GMG had access to the assay certificates for 2017 to 2020 drilling programs and to logs. For holes drilled in 2011, Mr. Duplessis completed a NI43-101 report on the property in 2015 (Duplessis, 2015) and he made a control data quality on 164 samples from the 2011drilling program. The tables (Table 30 and Table 31), below show the comparison between the original assays and the SGS reassays for control data quality.

The control data quality shows a small variation in silver grade, except for sample 45183 the SGS assays are higher than the original assay and which suggest nugget effect. For the cobalt grade, the results have an acceptable margin of error, even for the high grade of cobalt.

Table 30: Correlation between original assays and SGS re-assays control data for silver (Ag (g/t))

Samples	Drilling Campaign			SGS contro	l campaign	
	Average	Min	Max	Average	Min	Max
44253	11.60	11.00	12.20	11.05	10.90	11.20
44450	10.09	10.00	10.17	12.20	12.10	12.30
44873	7.39	5.00	9.82	12.15	11.70	12.60
44874	15.00	12.00	18.00	13.80	12.60	15.00
44876	7.07	5.00	9.14	10.80	10.50	11.10
45119	12.00	12.00	12.00	13.00	12.80	13.20
45182	386.13	386.00	386.26	212.50	210.00	215.00
45183	947.88	947.75	948.00	11 508.50	11 489.00	11 528.00
45184	218.64	168.00	269.30	140.50	134.00	147.00
45185	311.08	311.00	311.16	138.00	138.00	138.00
45186	220.11	220.00	220.21	134.00	132.00	136.00
45290	18.66	6.00	10.46	21.35	19.70	23.00

Table 31: Correlation between original assays and SGS re-assays control data for cobalt (in ppm)

Samples	Drilling Campaign		SGS control	Difference	
	Average	Sample	Average	Sample	average %
44253	521.00	1	650.00	2	-19.80
44450	130.00	1	100.00	2	30.00
45119	90.00	1	100.00	1	-10.00
45182	160.00	1	200.00	2	-20.00
45183	9 107.00	1	10 400.00	2	-12.40
45290	14 455.00	1	14 100.00	2	2.50
45298	102.50	1	100.00	2	2.50

For the mineral resource estimation, we used only hole CA1108 from the 2011 drilling program. In addition to the control data quality done by SGS a downhole camera inspection on this hole was

July 2020 111

NI 43-101 Technical Report for Castle East Robinson zone - July 2020

done by GMG which confirmed the presence of massive silver mineralisation at depth 564 m (see item 9).

GMG considers the database for CCW property to be valid and of sufficient quality to be used for the mineral resource estimate herein.

July 2020

112

13 Mineral processing and metallurgical testing (Item 13)

No metallurgical tests were done on the Robinson Zone.

July 2020

14 Mineral resource estimate (Item 14)

The Castle project is composed of several properties (Figure 2) owned by Canada Silver Cobalt Works. GoldMinds Geoservices (GoldMinds) was given the mandate to estimate the mineral resource for the Castle East project at Robinson zone. This technical report documents the mineral resource estimate (press release of May 28, 2020) for the Robinson zone discovery, based on the last diamond drilling program. CCW's program aimed to delineate the extent of the high-grade mineralization within the Robinson Zone that shows very high grades in the form of native silver. The cut-off date for the database is April 28, 2020. The current mineral resource represents the first NI 43-101 mineral resource at the Robinson zone.

The mineral resource estimate conforms with CIM Estimation of Mineral Resource and Mineral Reserves Best Practices Guidelines and are reported in accordance with Canadian Securities Administrators' National Instrument 43-101.

14.1 Resource database

The database used for the mineral resource estimation is composed of the historical data (drilling program 2011) and recent drilling data (Figure 70).

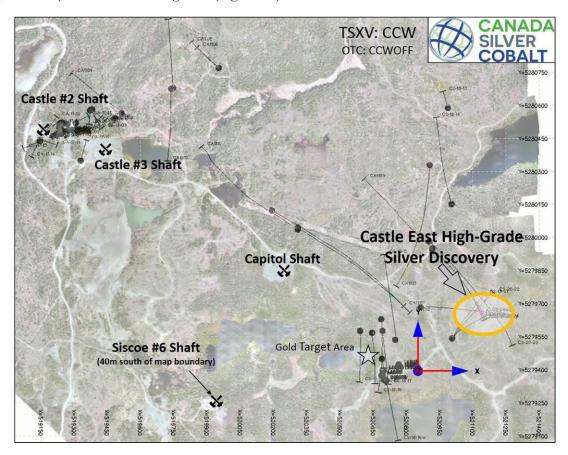


Figure 70: Plan view showing the distribution of the database

The database composed by 176 collars, 1,185 valid down hole survey deviations, 6,160 assay intervals and 1,113 lithological intervals. The database includes all the properties (Castle silver mine, Castle East and the Robinson zone; Figure 70).

Only the recent drilling program started on November 28th, 2019 with one historical hole drilled in 2011 (CA1108) were used for this mineral resource estimate. The drillhole database used for this estimate contained nine valid drill hole collars, 683 valid down hole survey deviations, 1,276 assay intervals and 1,131 lithological intervals (Figure 71).

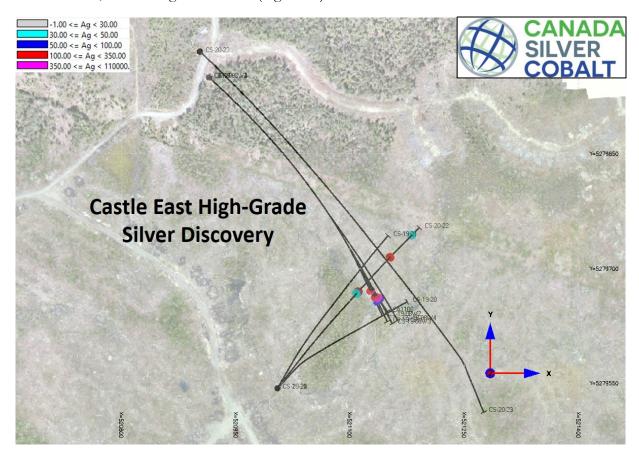


Figure 71: Plan showing the drill holes used for this mineral resource estimate

Four holes (CS-19-08W1, CS-19-08W2, CS-19-08W3 and CS-19-W4) were wedged off the 2011 hole followed by four holes (CS-19-20, CS-19-21, CS-20-22 and 23) drilled to intersect the vein zone from a different angle (Figure 71). The latest hole was drilled parallel to and collared 45 meters from the historic hole.

After the verification/correction of the compiled data. GoldMinds considered the database suitable for resource estimation.

July 2020

14.2 Topography and bedrock-overburden surfaces

The topographic surface of the western zone covers around 1.56 km². All collar survey coordinates are presented in UTM (Zone 17, NAD83; Figure 72). The Robinson zone is covered by the topographic survey was generated from a 2016 stereo-photo survey provided by the issuer. Some adjustments were made in order to remove trees from survey in some highly vegetated areas. A topographic survey on all the property is highly recommended.

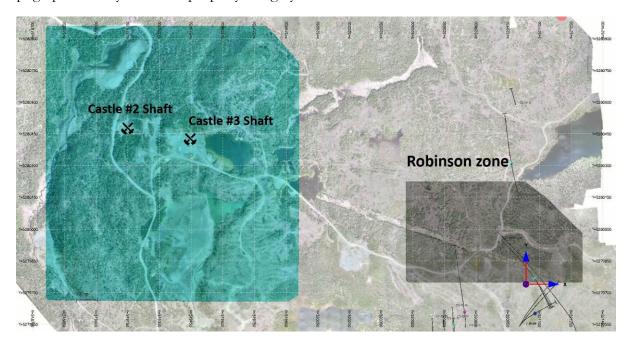


Figure 72: Plan view showing the topographic surface and the database used for this mineral resource estimate

14.3 Resource estimation procedures (Methodology)

The Mineral Resource detailed in this report was prepared using Genesis software. The creation of the mineral intervals and geological interpretation on section and plan of the mineralized bodies of the deposits was done for the construction of the masse mineralized envelopes and grade estimation. The interpretation was first completed on sections to define mineralised vertical projection contours called prisms in Genesis software using Ag, Co and Ni assays and based on observed mineralised drill core samples.

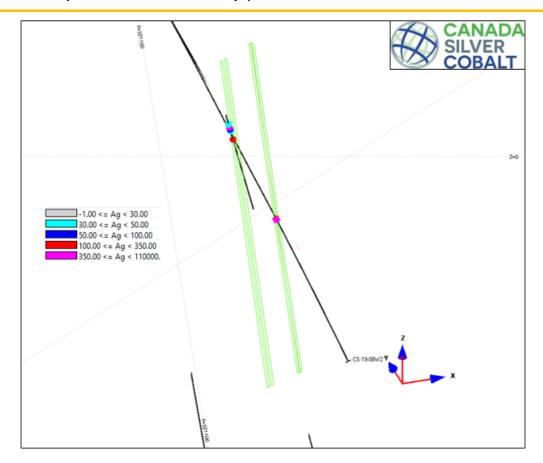


Figure 73: Inclined section showing the defined mineralised prisms defined on sections

Two passes were used for the deposit were estimated using inverse square distance methodology. For each pass, the search ellipsoids used followed the geological interpretation trends.

14.4 Geologic interpretation

The recent drilling program show the presence of massive mineralized structures with native silver and cobalt arsenides within the medium- to coarse-grained diabase. Significantly, these drill holes confirmed the grassroots discovery of a classic Northern Ontario Silver-Cobalt District-style vein shoot in this heavily under-explored part of the Nipissing diabase.

The geological model is built for sub-vertical structures (vein style mineralisation) hosting silver-cobalt mineralisation along a NW-striking and SW-dipping plane at a vertical depth of approximately 400 meters from the surface. In addition to the log interpretations, the downhole camera inspection has been successful and allows for the geometric characterisation of the visible massive silver vein at hole CA1108.

Interpretation was initially made from cross-sections and then completed in Genesis software where selections of mineralization intervals on cross-sections and plan views were combined to generate 3D wireframes. The wireframes were created by GoldMinds and are generally snapped to

mineralized zones intercepts. A minimum horizontal width of 1.3 m was used for the creation of the domains to produce valid solids.

The deposit is open to the north-west and west along strike, as well as down-dip, indicating significant exploration upside and drill-ready targets. Drilling completed to date has tested the main zone, the NW strike extensions are still to be drilled. The company is currently planning an extensional drilling program to further grow the resource base and drill test some of other high-priority targets.

14.5 Specific gravity

The specific gravity is used to calculate tonnage from the estimated volumes in the resource-grade block model. The mineralisation at Robinson zone occurs mainly in vein systems within the Nipissing diabase.

A fixed density of 3.4 t/m³ was used to convert volumes into tonnage. This density reflects the typical mineralized interval composed mainly by diabase.

It is recommended to carry specific gravity measurement on fresh core during the next drill program using the standard water immersion method. Complete intervals of core pieces with corresponding assay tags (intervals) should be measured for a few select holes in order to allow additional reliable analysis and validation of the specific gravity.

14.6 Compositing

Block model grade interpolation was conducted on composited assay data in order to minimize any bias introduced by varying sample length. The proposed block size was taken into consideration for the selected composite length.

A composite length of 0.5 m has been selected to reflect the average sample length and the drilling sample length of the recent drilling program. Compositing is conducted from the start of each mineralized intercept of drill holes or channels, drift data. The last composite kept at the end of the mineralized intercept has a minimum length of 0.1 m. The assays and the composite grades were not capped (Figure 75).

All intervals within the mineralized zones that are not assayed were given a value of zero during the compositing routine.

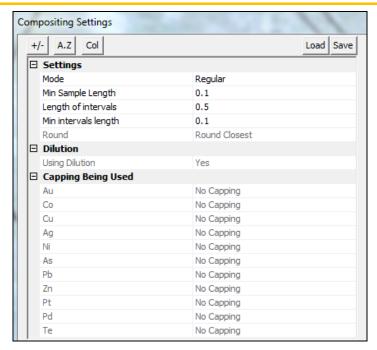


Figure 74: Composite settings

14.6.1 Capping

The blocks were interpolated from equal-length composites calculated from the mineralized intervals. Prior to compositing, high-grade assays were not capped. The assays results using for the mineral estimation correspond mainly to massive silver-cobalt filling fractures. These assays are not considered as outliers at this stage and results are reproducible.

14.6.2 Statistical analysis

The assay values of the Castle East Robinson Zone were exported for statistical analysis. The author compiled and reviewed the basic statistics of the silver-cobalt mineralisation and these statistics are shown in the following figures below (Figure 75 and Figure 76).

The search ellipsoid orientation and dimensions were determined based on the geologist's interpretations and the downhole camera inspection of the mineralised zones. These mineralised intervals are mainly controlled by the vein orientation.

Figure 75: Histogram showing all assays Ag g/t at Robinson zone

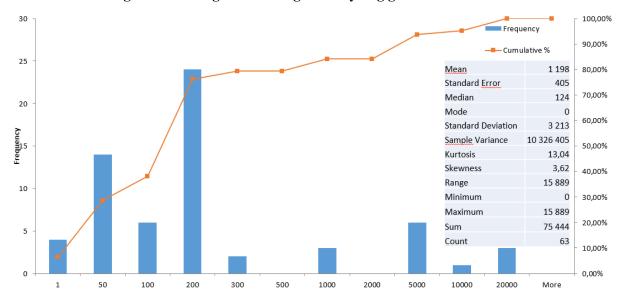


Figure 76: Histogram showing all assays Co g/t at Robinson zone

14.7 Block model

14.7.1 Envelopes

A total of three mineralized envelopes were created by connecting the defined mineralized prisms (polygon interpretation) on the sections. The modelling of envelopes relied on data available in the compiled database. The mineralised envelopes were created using only the last diamond drill holes (CS-19-08W1 to W4; CS-19-20. CS-19-21; CS-20-22 and CS-20-23) and the historical hole CA1108.

The geological and mineralization wireframes were constructed using Genesis©, a modelling and mineral estimation software. The following figure (Figure 77) presents the location and shapes of the envelopes used for block modelling.

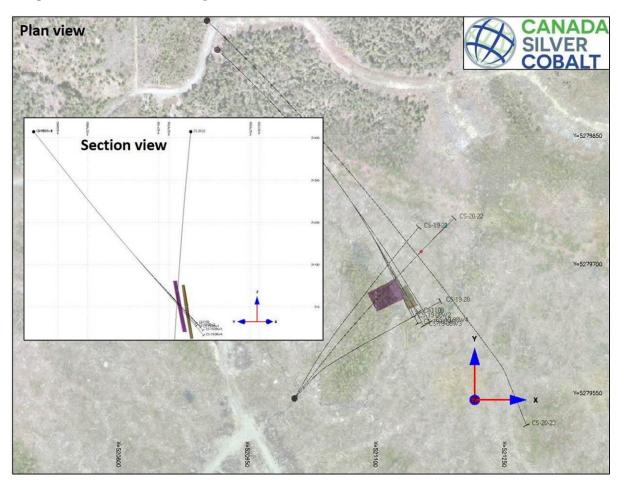


Figure 77: The mineralised envelopes at the Robinson zone

14.7.2 Block model parameters

The envelopes have been filled by regular blocks (1mE x 1mN x 1mZ) and only composites within the envelopes have been used to estimate the block grades.

The origin of the block model is the lower left corner of the mineralized envelopes. The block size has been defined to respect complex geometry of envelopes (Figure 78).

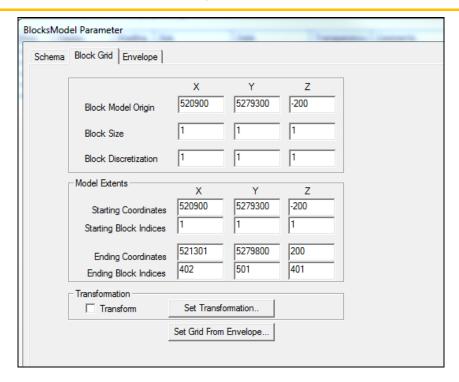
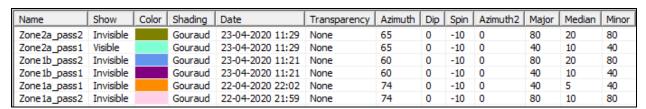



Figure 78: Block grid parameters

14.7.3 **Search ellipse**

Search ellipsoids were used to select the composites (point data) used in the estimation of the block grade. The following table (Table 32) presents the search ellipsoids with their axis length and orientation. The median is the short axis, the major is the long axis and the minor is the intermediate axis. For the vein style mineralization, ellipsoids have the long axis oriented in the subvertical direction, similar to observations in the field (using the downhole camera) and the drill core.

Table 32: Search ellipsoid list for Castle East Robinson zone

July 2020

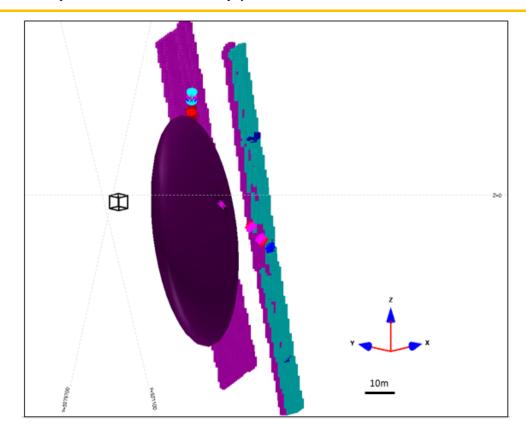


Figure 79: The ellipse orientation

14.7.4 Estimation parameters

The mineral estimation was realised using drill results obtained from historical (2011 one hole) to the recent 2019 drill program and wedges. The mineral estimation using inverse square distance methodology applying two passes. For each pass, search ellipsoids were used to select the composites (point data) and followed the geological interpretation trends.

Table 33, shows the minimum composites, maximum composites and composites per drill hole used. For the first pass, the number of composites was limited to twelve (12) with a minimum of three (3) with a maximum of two (2) composites from the same hole (Table 33). For the second pass, the number of composites was limited to twelve (12) with a minimum of two (2), (Table 33).

Table 33: Two pass estimation composite parameters

	Minimum Composites	Maximum Composites	Composites per drillhole
First Pass	3	12	1
Second Pass	2	12	n/a

July 2020 123

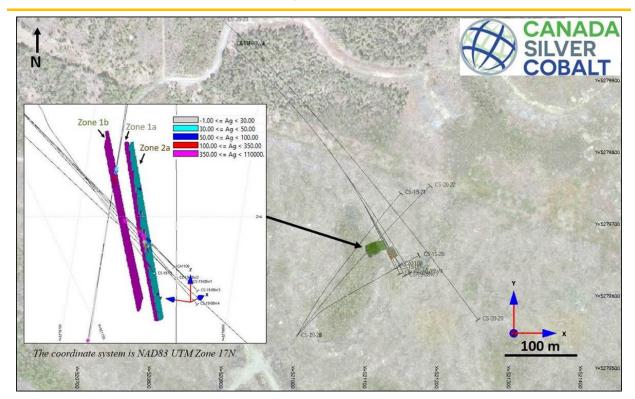


Figure 80: Section view to the east of block models coded by Ag g/t

14.8 Resource categories

The following definitions were applied for the classification of the presented mineral resource.

Mineral resources are sub-divided, in order of increasing geological confidence into Inferred, Indicated and Measured categories.

Mineral resources are not mineral reserves and have not demonstrated economic viability. There is no certainty that all or any part of the mineral resource will be converted into mineral reserves. GoldMinds is not aware of any environmental, permitting, legal, title, socio-economic, marketing, political, or other relevant factors that could materially affect the Mineral Resource estimate.

Measured Mineral Resources:

"A Measured Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, and physical characteristics are so well established that they can be estimated with confidence sufficient to allow the appropriate application of technical and economic parameters, to support production planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough to confirm both geological and grade continuity."

Indicated Mineral Resources

"An Indicated Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic viability of the deposit. The estimate is based on detailed and reliable exploration and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough for geological and grade continuity to be reasonably assumed."

<u>Inferred Mineral Resources:</u>

"An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified, geological and grade continuity. The estimate is based on limited information and sampling gathered through appropriate techniques from locations such as outcrops. trenches, pits, workings and drill holes."

14.9 Cut-off grade definition

14.9.1 **Cut-off grade**

The mineral resource reported at an appropriate cut-off grade that accounts for extraction scenarios and processing recoveries.

After the validation of the mineral resource model and the grade distribution, the author discloses that a cut-off grade of \$125 USD (258 g/t AgEq) is appropriate for the underground extraction considering the price in the Table 34.

Table 34: The price used for the calculation of AgEq in USD

Element	Ag	Со	Cu	Ni	Pb	Zn
Clement	[oz]	[ton]	[ton]	[ton]	[ton]	[ton]
USD	\$ 15	\$30,000	\$5,150	\$12,327	\$1,650	\$1,925

$$AgEq = \frac{\left(\frac{Ag\frac{g}{t}\times15\frac{USD}{OZ}}{31.103\frac{g}{OZ}} + Co\frac{g}{t}\times0.03\frac{USD}{g} + Cu\frac{g}{t}\times0.00515\frac{USD}{g} + Ni\frac{g}{t}\times0.012\frac{USD}{g} + Pb\frac{g}{t}\times0.016\frac{USD}{g} + Zn\frac{g}{t}\times0.00192\frac{USD}{g}\right)}{\frac{15USD}{31.103g}}$$

Mineral resources are not mineral reserves and have not demonstrated economic viability. There is no certainty that all or any part of the mineral resource will be converted into mineral reserves. It is uncertain if further exploration will allow improving of the classification of the Inferred mineral resources.

14.9.2 Mining and OPEX

From the results we know up to now, the minimum width of the mineralized envelopes is 1.3 meter for a maximum depth of 490 meters. With those parameters, a future mine would have a ramp from surface instead of a shaft.

If the future depth is deeper and open below 490 meters, the idea of a shaft could be reconsidered.

Since there could be only a main ramp for now, the mining operation would be trackless and the ore and waste would be hauled from underground to surface by mine hauling trucks or scoop tram type of equipment. A ventilation raise would be developed that would be used also as escape-way. The mining method could be cut-and-fill or open stope but we will need more details in the future on the width (min. and max.) of the different envelopes. At the present time no costs are incurred on a backfilling method.

As an example, a future mine with 1,250 metric tonnes (m.t.) per day process plant could have these kinds of costs:

- Waste development cost, 3.00\$US per m.t. processed.
- Mineralized material production cost (includes drill, blast, muck, support, ventilation and heating, services, power, all manpower, haulage and development cost in ore: 55.00\$US per m.t. processed.
- Mineralized material processed (includes crushing, process, power, etc.) , 40.00\$US per m.t. processed
- Refiner cost, 10.00\$US per m.t. processed.
- Administration and Environmental, 6.00\$US per m.t. processed
- Management fees (around 10%), 11.00\$US per m.t. processed for a total of 125\$US per m.t. processed.

All major and permanent development done will be part of the Capex amount.

Mineral resources are not mineral reserves and have not demonstrated economic viability. There is no certainty that all or any part of the mineral resource will be converted into mineral reserves. It is uncertain if further exploration will allow improving of the classification of the Inferred mineral resources.

14.10 Resource statement

The mineral resource estimated using the last holes drilled from the surface (CS-19-08W1 to W4; CS-19-20. CS-19-21; CS-20-22 and CS-20-23) and one historical drill hole (CA1108). The maximum depth of the mineralized envelopes is around Z = -73 m (around 490 metres from the surface).

The envelopes are extended from around 350m to 490m from the surface. This resource estimate was independently prepared by GoldMinds Geoservices Inc. in accordance with National Instrument 43-101 ("NI 43-101") and is dated May 28, 2020 (Table 35).

Table 35: Mineral resource estimate at Castle East property using a cut-off grade of 258 AgEq g/t

Inferred mineral	Ag	Со	Cu	Ni	Pb	Zn	Ag Eq	Tonnes	Ag	Ag Eq
resource	g/t	g/t	g/t	g/t	g/t	g/t	g/t		Oz.	Oz.
Zone01a	7,960	946	349	790	16	12	8,042	8,100	2,073,000	2,094,200
Zone01b	8,843	2,308	325	336	30	52	8,998	19,300	5,487,200	5,583,200
Zone02a	38	5,673	2,101	453	118	108	426	5,500	6,800	75,300
Total Inferred Mineral Resource	7 149	2 537	628	467	41	52	7 325	32 900	7 567 000	7 752 700

Notes:

- Mineral resources which are not mineral reserves do not have demonstrated economic viability. The estimate of
 mineral resources may be materially affected by environmental, permitting, legal, title, market or other relevant
 issues. The quantity and grade of reported inferred resources are uncertain in nature and there has not been
 sufficient work to define these inferred resources as indicated or measured resources.
- 2. The database used for this mineral estimate includes drill results obtained from historical (2011 one hole) to the recent 2019 drill program and wedges from the 2011 diamond drill hole.
- 3. Mineral Resource is reported with mineable shape cut-off grade equivalent to 125\$USD (258 g/t AgEq) including mining, shipping and smelting cost with recovery of 95%. The high-grade value of the mineral resources makes them direct shipping. Not all zones (mineable shapes) are above economic cut-off grade and zone 02b is a must-take material. The assay results are not capped as they are not considered as outliers at this stage and results are reproducible.
- 4. The geological interpretation of the mineralized zones is based on lithology and the mineralized intervals intersected by drill holes. The use of the borehole inspection camera provided a valuable geometric characterization of the mineralized intervals.
- 5. The mineral resource presented here was estimated with a block size of 1mE x 1mN x 1mZ.
- 6. The blocks were interpolated from equal length composites of 0.5m calculated from the mineralized intervals.
- 7. The minimum horizontal width of the mineralized envelopes includes dilution and is 1.3m.
- 8. The mineral estimation was completed using the inverse distance to the square methodology utilizing two passes. For each pass, search ellipsoids following the geological interpretation trends were used.
- 9. The Mineral Resource has been classified under the guidelines of the CIM Standards on Mineral Resources and Reserves. Definitions and Guidelines prepared by the CIM Standing Committee on Reserve Definitions in 2019 and adopted by CIM Council (2020), and procedures for classifying the reported Mineral Resources were undertaken within the context of the Canadian Securities Administrators NI 43-101.
- 10. To convert volume to tonnage a specific gravity of 3.4 tonnes per cubic metre was used. Results are presented in-situ without mining dilution.
- 11. This mineral resource estimate is dated May 28, 2020. Tonnages and Oz AgEq in the table above are rounded to nearest hundred. Numbers may not total due to rounding.

The Company will continue to advance, explore and de-risk the project with further engineering (metallurgical. mining) and environmental study & social community relation with locals and First Nations.

15 Environmental studies, permitting, and social or community impact (Item 20)

The present Technical Report is not an Advanced Property Technical Report. Therefore, this section will not be discussed in the present document.

16 Adjacent properties (Item 23)

Following information of this subsection are collected from the Mining Lands Administration System (MLAS), Ontario government's title management system, on May 12, 2020.

There are different properties directly adjacent to CCW property and located in a radius of about 25 km. Those can be visualized on Figure 81.

On the west side of the property, a claim is owned by private individuals and companies such as Sherry Lynn Swain, and a claim divided between Fred Ross Swain (17%), Glenn Walter Bray (27%), Margaret Kaye Montgomery (7%), Sharon Adelia Cotton (20%), Randsburg International Gold Corp. (14%), and W. Johnson Mining & Oil Field Services Ltd. (15%).

To the North of the property we have the claims of Grid Metals corp., FNX Mining Company Inc., Alamos Gold Inc., Canadian Gold Miner corp., Carmax Mining corp., and Alexandria Minerals Corporation.

To the east, we found the claims of Jonathan Paul Camilleri, Glen Robert Shalton and Yvan Denis Veronneau, and Michael Steven Newcsok are registered as owners of different claims.

To the South of the property localed claims registered under the name of Baselode Energy corp., IMetal Resources Inc., iCobalt Rusty Lake Cobalt Inc., and John Gregory Brady.

Closer to the center, near the CCW property, some mining claims are owned by Kelly James Malcolm, and a company registered as 2650076 Ontario Inc.. Battery Mineral Resources controls a large land package over areas east, south and west of CCW ground.

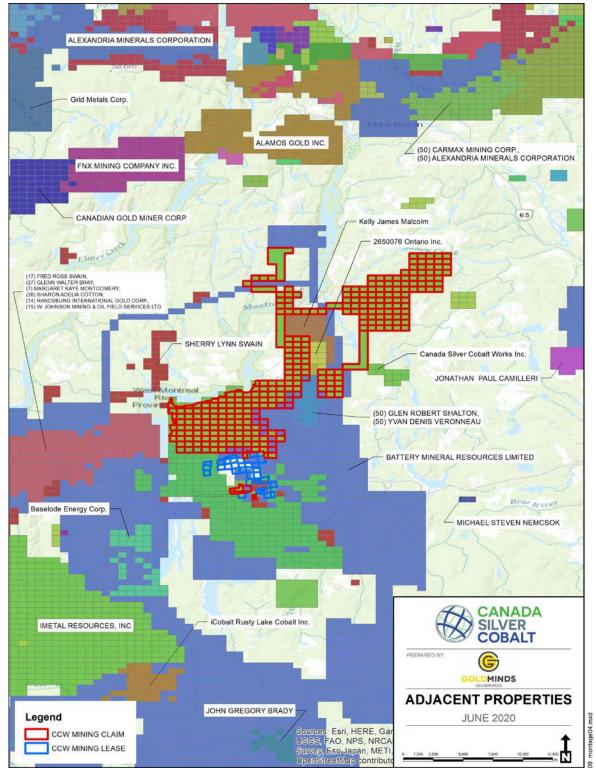


Figure 81: Map of adjacent properties

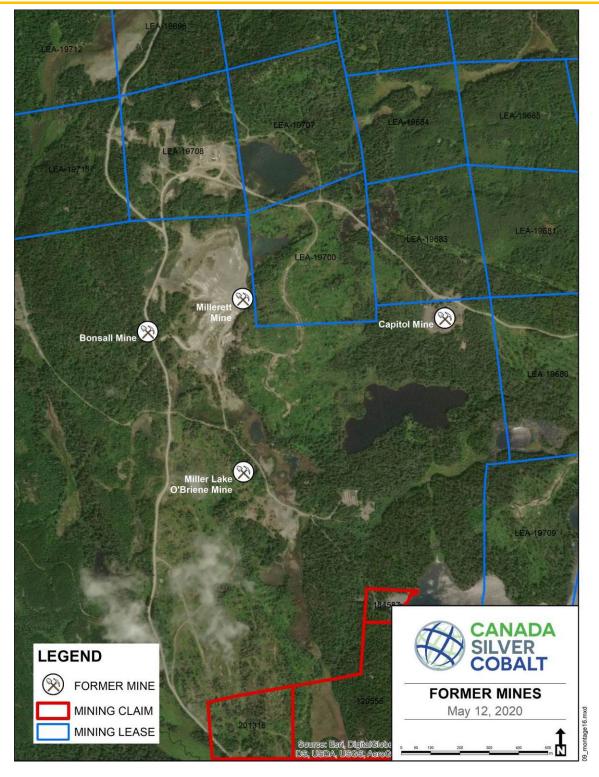


Figure 82: Location of the some old mines related to CCW property

This chapter describes properties adjacent to the group of claims owned by CCW (McIlwaine 1978) and history of various property around (Figure 82).

The information that follows on the adjacent properties has not been verified by the Qualified Persons and this information is not necessarily indicative of the mineralization on the property that is the subject of this technical report.

This report presents the information on CCW property and may not reflect the most up to date information of adjacent properties from other owners and can be used as indicative but not as formal NI 43-101 statement on the other properties.

- Bonsall Mine

The Bonsall property was among the earliest operated at Gowganda. The Bonsall Mine property was operated by Siscoe Metals of Ontario Limited, a wholly owned subsidiary of United Siscoe Mines Limited (Table 36). In 1969, the property in Haultain Township was composed of seven surveyed claims numbered RSC82 to RSC87 and RSC95. These surveyed claims included the old Bonsall and Millerett mines. To the north, west and southwest was a block of 33 un-surveyed claims, 18 of which were in Nicol Township.

The first work was done on claims 82 and 83, on veins carrying native silver discovered by Percy Bonsall in 1908. Most of the silver and smaltite showed in a narrow vein, averaging about 0.02 m (one inch), with an azimuth of 340, which was traced for 30 m (100 feet) by trenching. The surface of the vein was much oxidized, showing crystallized silver in black, with cobalt and nickel decomposition products.

Year	Ore and concentrate	Silver Ounces
	(Tons shipped)	
1910	4	7,840
1920	13	2,566
1967	4,193	131,450
1968	5,904	114,527
Total	10,114	256,383

Table 36: Bonsalle Mine production

Millerett Mine

The property is mainly underlain by Early Precambrian mafic volcanic rocks, conglomerate and feldspathic greywacke of the Gowganda Formation. Intruding these older rocks was the Nipissing Diabase with the upper contact of the Miller Lake basin crossing the claim. According to Sergiades (1968) there were two known principal veins; the main vein was striking northwest and was in the conglomerate, and No. 7 was striking east in the diabase.

The veins were calcite and were about 5 cm (2 inches) wide with "five leaflets" of silver which impregnated the host rock for a distance of up to 60 cm (2 feet) from the veins. After silver was discovered in 1908, development started the following year. An adit was driven 77 m (253 feet) for development of the main vein. From this adit, a crosscut was driven west for 46 m (150 feet). No.1

shaft was put down 25 m (83 feet) with a level at 21 m (70 feet) which was driven 88 m (290 feet) to the southwest and 46 m (150 feet) to the northeast. In 1914 and 1915, No. 10 shaft was sunk for 39 m (127 feet) in the southcentral part of the claim with levels established at 18 m (60 feet) and 39 m (127 feet).

Table 37, shows the production figures of the Millerett Mine held in 1969 by United Siscoe Mines Ltd (Sergiades, 1968).

Year	Ore and concentrate (Tons shipped)	Cobalt (Pounds)	Silver (Ounces)
1910	347	5,000	322,000
1911	53	-	130,687
1912	192	-	159,135
Total	592	5,000	611,822

Table 37: Millerett Mine production

- Capitol Mine

In 1908 a strong, mineralized north-south vein, carrying iron-cobalt-nickel arsenides, was discovered and exposed by trenching. A shaft was sunk 13 m (44 feet) on the vein at a point where the width was 0.3 m (12 inches). At a depth of 9 m (30 feet), there were several veins exposed in a width of 0.38 m (15 inches). To explore the property, the Capitol management proposed to sink a shaft into the underlying diabase sill. The shaft, located 18 m (60 feet) west of the vein, passed through 33 m (110 feet) of sediments of the Cobalt series which overlaid Keewatin greenstone. At a depth of 250 m (819 feet), where sinking was discontinued, the formation was Keewatin greenstone. At the 244 m (800 feet) level, crosscuts 83 m (273 feet) east and 55 m (182 feet) west were made. Further work, by diamond-drilling from this horizon, located the contact with the sill diabase sill at 316 m (1,039 feet) from the surface (Burrows 1926).

In an amalgamation of Capitol Silver Mines Limited and Trethewey Silver Cobalt Mines Limited, the new company of Castle-Trethewey Mines Limited was formed in 1929. Operations closed in 1931 but attempts to operate the mine were renewed in 1948 when work was commenced in the Capitol workings. The property was taken over in 1959 by McIntyre Porcupine Mines Limited. The mine was closed because of a lack of ore in 1966. In 1967 United Siscoe Mines Limited took a long-term lease on all of McIntyre's Gowganda area property with the idea of re-examining the old workings for additional ore. This was met with success as the Siscoe Annual Report indicated that 55 percent of the 1969 production came from the Capitol workings which were connected through underground development to the Siscoe No.6 shaft area.

Table 38, shows the production figures of the Capitol Mine held in 1969 by McIntyre Porcupine Mines Ltd and leased to United Siscoe Mines Ltd (Sergiades, 1968).

Year	Ore and concentrate	Cobalt (Pounds)	Silver (Ounces)	Nickel (Pounds)
	(Tons shipped)			
1951	180	14,894	480,214	-
1952	258	12,181	731,172	-
1953	455	25,638	1,011,730	-
1954	794	29,637	992,017	-
1955	638	24,450	775,663	-
1956	513	31,362	885,845	4,657
1957	491	20,569	657,403	4,638
1958	547	22,055	684,005	3,667
1959	563	27,303	1,026,218	5,312
1960	643	-	1,419,258	-
1961	500	-	1,008,669	-
1962	640	-	879,052	-
1964	1,701	-	217,410	-
1966	-	-	-	-
Total	7,923	209,474	10,837,181	18,826

Table 38: Capitol Mine production

Miller Lake O'Brien Mine

In 1969, the property of United Siscoe Mines Limited was operated by Siscoe Metals of Ontario Limited which in 1972 was a wholly owned subsidiary of United Siscoe. The company's property was composed of three blocks of claims. The first group was a block of seven surveyed claims numbered RSC88 to RSC94, on which the famous Miller Lake O'Brien mine was located. The second was the O'Connell Group of un-surveyed claims. Finally, the Roy-Ten Group was part of a block which overlapped into Haultain Township.

In 1909, the property was held by the Miller Lake Mining Company and finally in 1910 was taken over by the M.J. O'Brien interests. Later in that year, Clifford Sifton bought a one-third interest in the mine for \$312,000 which was what O'Brien paid for it (Young and Young 1967). A few months prior to the first ore shipment in 1910, Sifton relinquished his interest in the mine for \$310,000 and in so doing lost a great deal of money (Young and Young 1967).

The property was kept in production until 1939. Leasing operations were carried on from 1940 to 1944 (Sergiades, 1968). In 1945 the property was taken over by Siscoe Metals of Ontario Limited and continuous production was maintained. Since taking over the property, Siscoe Metals of Ontario Limited kept up a continuing and intensive program of exploration and to a very large degree this met with success as they kept production up close to 1,000,000 ounces every year since 1954.

Table 39, shows the production figures of the Miller Lake O'Brien Mine (Sergiades, 1968 and ODM Statistics).

Table 39: Miller Lake O'Brien Mine production

Year	Ore & concentrate	Cobalt	Silver	Nickel	Copper
	(Tons shipped)	(Pounds)	(Ounces)	(Pounds)	(Pounds)
1910	31	-	91,730		
1911	135	-	338,000		
1912	112	-	354,252		
1913	167	-	469,923		
1914	114	-	369,544		
1915	110		242,229		
1916	171		360,670		
1917	350		1,050,149		
1918	160	26,994	631,671		
1919	184	27,404	708,872		
1920	115	14,982	376,417		
1921	103	9,187	224,340		
1922	76	6,948	130,553		
1923	24	2,199	12,844		
1924	26	2,154	50,021		
1925	150	7,226	347,909		
1926	33	3,007	70,764		
1927	260	15,768	588,216		
1928	285	26,303	876,461		
1929	359	35,880	1,197,634		
1930	358	52,005	1,188,390		
1931	350	38,411	1,289,742		
1932	530	72,081	1,374,660		
1933	366	40,729	1,244,812		
1934	270	32,273	1,039,565		
1935	214	20,818	800,669		
1936	234	24,241	637,411		
1937	201	20,818	521,633		
1938	196	15,457	501,821		
1939	200	19,185	498,043		
1942	69	7,194	191,526		
1943	60	5,205	172,693		
1944	71	9,000	250,676		
1945	11	1,185	44,585		
1947	-	-	94,301		
1948	507	-	183,163		

Year	Ore & concentrate	Cobalt	Silver	Nickel	Copper
	(Tons shipped)	(Pounds)	(Ounces)	(Pounds)	(Pounds)
1949	723	6,000	626,254		
1950	1,182	18,470	836,047		
1951	1,247	23,115	879,506		
1952	1,454	20,369	1,047,037		
1953	871	13,400	640,100		
1954	1,542	17,500	1,097,563		
1955	1,073	24,917	1,039,162		
1956	787	17,036	722,236		
1957	963	17,040	903,177	2,997	19,610
1958-69	10,230	90,729	14,412,865	10,251	53,276
Total	22,471	785,700	40,736,585	13,248	72,886

17 Other relevant data and information (Item 24)

Castle Silver Mines accomplished significant rehabilitation and protection of the site. Fences have been installed around all the portal of the mine adit entrance and also the openings discovered while working have now been fenced with Frost fencing. CCW backfilled shaft 1 (on a staked claim), and endeavoured to re-slope waste rock piles where stopes were too steep to be safe.

As part of the advanced exploration permit of CCW, rehabilitation of underground workings was undertaken before starting the underground sampling and drilling program on the first level to ensure safety for all workers underground. All work has been done to meet the Ministry of Labour guidelines and regulations.

No adverse protests or objections to the mine development have been observed at Castle East Robinson zone. The local population expressed their confidence in the project, as it is expected that new jobs will be created in this region.

18 Interpretation and conclusions (Item 25)

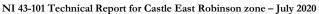
The objective of the mandate assigned to GoldMinds Geoservices was to generate a mineral resource estimate for the Castle East project at Robinson zone using the recent drilling program 2019/2020 and one historical drill hole from 2011 program (CA1108).

The Gowganda area is near the northwestern edge of the Cobalt Embayment of the Superior Province of the Canadian Shield. Several zones with Early Precambrian rocks are exposed and represent inliers in the Middle Precambrian cover. The Nipissing Diabase is of great importance as it is closely related to the silver deposits for which the area is well-known. Historic silver production in the Miller Lake Basin known as the Gowganda Silver Camp was almost exclusively from the Nipissing diabase. The majority of the ore was from the upper half of the Nipissing diabase cone intrusives.

The Silver mineralization with associated cobalt-nickel-iron arsenides occurs in veins and sheeted veins (or vein sets) commonly with or as fracture-fillings in stockworks mainly in the Nipissing Diabase. The silver mineralisation is usually associated with carbonate and/or quartz gangue. Alteration haloes are developed in the wall rocks along the veins as narrow (less than 10 cm) zones of calcite, chlorite, epidote, K-feldspar, muscovite and anatase. Chlorite occurs locally in spots, 1 to 5 mm in diameter. The wall rocks adjacent to the veins are commonly hydrothermally altered.

At the western side of the Castle Mine, cobalt grades were intersected at the first level previously only exploited for its native silver (item 10, underground drilling). The silver-nickel-cobalt-arsenide mineral concentrations occur in steeply dipping veins within the Nipissing diabase. This latter lithology is the primary host of very high-grade silver-cobalt mineralization in the Gowganda Camp. The sub-horizontal and sub-vertical fault structures, which extend throughout the Gowganda Camp, are key controls on the mineralisation.

The recent drilling program (2019/2020) at the Robinson zone started with four successful short wedge holes (wedges CS-19-08W1 to -W4) from hole CA1108) totaling 726.27 meters.


The best intersection encountered is hole CS-19-08W2 and have returned 70,380 g/t silver (2,053 oz/ton) over 0.30 meters within a broader zone of 1.4 meters grading 20,136 g/t (587 oz/ton) and 4 meters (core length) of 7,259 g/t (212 oz/ton).

The past-producing Castle, Capitol and O'Brien mines, all within a 2-km radius of the Robinson Zone, are interpreted to comprise a large silver-rich system of abundant vein networks that follow the dip of the diabase toward Castle East in the heart of the Miller Lake Basin. The shoot of high-grade mineralization within the Robinson Zone discovery vein is now believed to extend for at least 15 meters (49.2 feet) and was not delimited in any way through the four wedge holes that each intersected multiple veins and silver-filled fractures.

The Gowganda area has never been systematically explored as previous work in the area focused on exploiting the silver-rich Nipissing diabase while bypassing the cobalt. The latest results of trenching

July 2020 136

program, the 2018 drilling program and the 2019 underground drilling program highlighted gold mineralisation at the western (Gowganda Camp) and the eastern zone (Robinson zone). Drill holes CS-18-15, CS-18-16 and CS-18-16-W (wedge hole) east of the mine are a very important breakthrough and now have us seriously investigating an apparent gold system with appropriate sulphide and quartz veining in association with a major fault that may be the controlling fault for the zones we've encountered.

For gold results, the best intersection encountered at the western zone is hole C-U-19-016 and returned 10.98 g/t Au with 6,852.5 ppm Co, including 22.7 g/t Au over 0.3m. At the Robinson zone the best intersection for gold result is hole CS-18-16 that returned 6.18 g/t Au over 0.13m with 6,400 ppm Cu. This gold discovery at the western and the Robinson zone need more exploration work for a good understanding of the deposit.

GMG created a structural model for mineralized structures using all available information (downhole camera, lithological/structural drill core descriptions). To provide accurate resource modelling the QP based their wireframe model of mineralized structures on the drill hole database and the interpretation provided by the site geologists.

The mineral resource estimate used the last holes drilled from the surface (CS-19-08W1 to W4; CS-19-20. CS-19-21; CS-20-22 and CS-20-23) and one historical drill hole (CA1108). The maximum depth of the mineralized envelopes is around Z = -73 m (around 490 metres from the surface).

The Robinson zone contains an estimated Inferred Resource of 32,900 tonnes grading 7,325 AgEq g/t Ag for 7,752,700 ounces of silver.

The following conclusions are based on a detailed review of all technical information and results:

- The drillhole database is suitable enough for use in mineral resource estimation.
- The geological and grade continuity of mineralization in the Robinson zone is demonstrated and supported by assay results and downhole camera inspection.
- The present mineral resource estimate is classified as Inferred Resources. There are no indicated/measured resources.
- The present mineral resource estimate is prepared for a potential underground scenario at a cut-off grade of 258 AgEq g/t Ag.

The important risks, potential impacts that might affect the economic outcome of the Project are as follow:

- Mineral resources are not mineral reserves as they do not have demonstrated economic viability;
- Inaccurate density, that may affect the tonnage estimate;

- The tonnage and the grade of the reported inferred resource in this report are uncertain in nature. There has been insufficient exploration work to define these resources as measured or indicated and it is also uncertain whether further exploration would result in upgrading any of the inferred resource to measured or indicated category;
- The possibility to transfer a portion of the mineral resource to mineral reserve if a study demonstrates that the resource is economically viable;
- The mineral resource estimates are undiluted and in-situ;
- No metallurgical tests were done on the Robinson Zone;
- Existing infrastructures, the issuer may take into account the time and cost for infrastructure development (Roads, electric hydro line, Etc.);
- Communication with local community and the Ministry of Northern Development & Mines of Ontario's to obtain authorizations for future works.

The author has taken all possible actions to ensure that the mineral resource statements are accurate. The author is not aware of any external factors or risks that may affect the mining project (e.g., changes in metal prices, exchange rates, availability of investment capital, change in government regulations, etc.). Significant opportunities that could improve the economics; timing and permitting of the Project. Further information and evaluation are required before these opportunities can be included in the project economics.

19 Recommendations (Item 26)

GoldMinds Geoservices recommends that the project move to an advanced phase of exploration which would increase confidence on the mineral resource.

GoldMinds Geoservices recommends to CCW an exploration diamond drilling program in order to convert a portion of the Inferred resources to Indicated or Measured and also to increase the mineral resource estimate. GoldMinds Geoservices also recommends a trenching program and surface exploration mainly in the area with gold potential.

In addition to the exploration program GMG recommend geotechnical drillholes at the Robinson Zone property and the following table shows the recommended works (Table 40).

July 2020

Table 40: Estimation of the exploration program at CCW property

Recommended works	All included cost
Surface diamond drill (5000 meters) at 150 per meter	750,000
Collar survey/density measurement	25,000
Metallurgical test works	50,000
Geotechnical holes (5 drillholes)	100,000
Trenching program and surface exploration works	250,000
Total	1,175,000

- The author suggests specific gravity measurement on the whole core sample length, ideally the whole core and match the from-to of the analysis for at least 5 holes of the next diamond drilling program which should allow conversion an adequate estimation of tonnage.
- The collar surveys are considered adequate for the purpose of a resource estimate, but the collars should be professionally surveyed with a total station to increase the accuracy of the elevation of the recent program.
- A topographic survey on all the property is highly recommended.
- Due to the difference in the character of ore from one mine to another in the Cobalt Camp, metallurgical tests will be required for this site-specific mineralisation at the Robinson zone.
- A hydrogeological study is recommended to reduce risks associated with ground water and better define the water management strategy.
- A geotechnical data collection program is recommended to include more parameters (fractures, joints, shearing, roughness, weathering, alteration, etc.).

The author is of the opinion that the recommended work program and proposed expenditures are appropriate and believe that the estimated budget reasonably reflects the type and amount of contemplated activities.

20 References (Item 27)

Burrows, A.G. 1920: Gowganda Silver Area; Ontario Bur. Mines, Vol.29, pt.3, p.77-88.

Burrows, A.G. 1921: Gowganda Silver Area (4th report); p.1-46 in Gowganda and Other Silver Areas, Ontario Dept. Mines, Vol.30, pt.3, 54p. (published 1922).

Burrows, A.G. 1926: Gowganda Silver Area (Fourth report, revised); Ontario Dept. Mines, Vol.35, pt.3, p.l-61.

Campbell, A.D. 1930: Gowganda Silver Area; Trans. Can. Inst. Mining and Metallurgy, Vol.33, p.272-291.

Card, K.D., Mcilwaine, W.H., and Meyn, H.D. 1970: Operation Maple Mountain, Districts of Timiskaming, Nipissing, and Sudbury; Ontario Dept. Mines and Northern Affairs OFR5050, 275p. Accompanied by Maps P.584, P.585, scale 1:63,360 or 1 inch to 1 mile.

Collins, W.H. 1913: Geology of Gowganda Mining Division; Geol. Surv. Canada, Memoir 33, 121p.

Duplessis, C. 2015: Takara Resources Inc. Castle Silver Property Gowganda, Ontario, Canada NI 43-101 Technical Report, 119p.

Hester, B.W. 1967: Geology of the Silver Deposits near Miller Lake, Gowganda; CIM Bull., Vol.60, p.1277-1286.

McIlwaine, W.H., 1978: Gowganda Lake-Miller Lake Silver Area, District of Timiskaming; Ontario Geological Survey, Ministry of Natural Resources, Report 175, 161p.

Miller, W.G., 1910: The Cobalt-Nickel Arsenides and Silver Deposits of Timiskaming (Cobalt and Adjacent Areas); Ontario Bur. Mines, Vol.19, pt.2, 279p. (4th edition, published 1913). Accompanied by maps and sections.

Ministry of Northern Development and Mines (http://www.mci.mndm.gov.on.ca/Claims/clm mmen.cfm)

Moore, E.S., 1955: Geology of the Miller Lake Portion of the Gowganda Silver Area; Ontario Dept. Mines, Vol.64, pt.5, 41 p. (published 1956).

Robertson, J.A., Card, K.D., and Frarey, M.J. 1969: The Federal-Provincial Committee on Huronian Stratigraphy: Progress Report; Ontario Dept. Mines MP31, 26p.

Robertson, J.A., Frarey, M.J., and Card, K.D. 1969: The Federal-Provincial Committee on Huronian Stratigraphy: Progress Report; Canadian J. Earth Sci., Vol.6, No.2, p.335-336.

Robinson, D. 2015: ASSESSMENT REPORT ON Mapping MMI Geochemical Sampling Stripping and Channel Sampling Grid Rehabilitation Castle #3 Rehabilitation & Castle #1 Voluntary Rehabilitation, 197p.

Sergiades, A.O., 1968: Silver Cobalt Calcite Vein Deposits of Ontario; Ontario Dept. Mines, MRC10, 498p.

Web site of MNDN

Internal files and reports from Doug Robison.

July 2020 140